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A class of nonlinear wave equations of p-Laplacian type are presented based on a
generalized Hooke’s law. These equations can be used to model vibration of rods,
beams, and plates made of heat treated metals that satisfy the power-law stress-
strain relationship in the framework of small strain theory. The examples include
some rods and Euler-type beams in the form of a single stainless steel fibre of the
hybrid stainless steel assembly used in transportation industry for lighter and more
crashworthy vehicles. These metals are special cases of nonlinear strain-hardening
elastic-plastic materials. Some finite element and finite difference schemes are also
presented to fully discretize the wave equations and obtain numerical approxima-
tions, including linear and cubic finite elements, and some iterative finite difference
schemes such as Newmark, Runge-Kutta,and others. The numerical results are an-
alyzed and compared with some analytical solutions.

1 Generalized Hooke’s law for Ludwick materials

1.1 One dimensional version

It is well known that, in uniaxial state, the stress and strain relation for the power-law
plastic material, or sometimes referred to as the Ludwick material, is given by

σ = K|ε|n−1ε, 0 < n ≤ 1, (1)

where σ is the stress, ε the strain, K and n are engineering constants with values depending
on a specific material. This is within the small deformation theory. For a given metal or
alloy, K and n depend on the heat treatment received by the metal or alloy. The parameter
n is called the strain-hardening exponent for the material. When n = 1, equation (1) reduces
to the Hooke’s law for linear elastic material and the constant K equals the corresponding
Young’s modulus E. Table 1 is a list of some experimental values of K and n, see, e.g.,
Shackelford 12.

1.2 Higher dimensional versions

In the following, bold letters are used to denote for vectors or matrices. A vector is a single
row matrix. The transpose of a matrix A is denoted by Aτ , and the inner product of two
vectors u and v by uvτ . The time derivative ∂u

∂t is denoted by u̇. Let the displacement

vector be u = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)), let εx = ∂u
∂x , εy = ∂v

∂y , εz = ∂w
∂z , γxy =

1
2 (∂u∂y + ∂v

∂x ), γyz = 1
2 (∂v∂z + ∂w

∂y ), γzx = 1
2 (∂w∂x + ∂u

∂z ) be the strain components, and let σx,
σy,σz, τxy, τyz,τzx denote the corresponding stress components. Let

D(u) =

 εx γxy γxz
γyx εy γyz
γzx γzy εz

 , and |D(u)| =
√
ε2x + ε2y + +ε2z + 2γ2

xy + 2γ2
yz + 2γ2

zx. (2)
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Table 1. Experimental Data of K and n for some heat treated alloys.

Alloy K (MPa) n

HSSA 368 0.11

Pure Aluminum 900 0.07

304 stainless steel 1275 0.45

A three dimensional Hooke’s law for an isotropic Ludwick type material can be written as

σx
σy
σz
τxy
τyz
τzx


=

K|D(u)|n−1

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν





εx
εy
εz
γxy
γyz
γzx


, (3)

where K and ν are material constants. When n = 1, K equals the Young’s modulus of
linear elasticity and ν the corresponding Poisson’s ratio. For plane stress problems, (3) can
be simplified to  σx

σy
τxy

 =
K

1− ν2
|D(u)|n−1

 1 ν 0
ν 1 0
0 0 1− ν

 εx
εy
γxy

 . (4)

with the assumption that σz = σyz = σzx = 0. Similar version for plane strain can be
obtained by setting εz = εyz = εzx = 0. There are similar versions of higher dimensional
stress-strain relations for power-law hardening material in the literature. See, e.g., Gao 7,
and Giannakopoulos 5 etc.

2 The Lagrangian functional for Ludwick plastics bodies

2.1 Lagrangian for Ludwick material

The potential energy for a Ludwick elastic-plastic body occupying a three dimension body
V can by defined by

U =
1

n+ 1

∫
V

σετdV, (5)

where ε = (εx, εy, εz, γxy, γxz, γyz), and σ = (σx, σy, σz, τxy, τxz, τyz) . The Lagrangian energy
functional I(u) equals the kinetic energy T minus the elastic-plastic potential energy U plus
the work done by an external force W . It can be written as

I(u) =
1

2

∫
V

ρu̇u̇τdV − 1

n+ 1

∫
V

σετdV +

∫
V

fuτdV +

∫
∂V

tuτdS, (6)

where ρ is the density, u̇ = (u̇, v̇, ẇ) the velocity, f = (fx, fy, fz), the body force, and
t = (tx, ty, tz) the surface force. This general form of the Lagrangian functional can be
simplified in the following special cases.
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2.2 Lagrangian for the rod

For an axial rod with cross-sectional area A, density ρ, and length L, subject to an axial force
f , we have m = ρA, σ = (σx, 0, 0, 0, 0, 0), u = (u(x, t), 0, 0), σx = K|εx|n−1εx, f = (f, 0, 0),
so the Lagrangian energy functional is given by

I(u) =
1

2

∫ L

0

ρAu̇2dx+
1

n+ 1

∫ L

0

KA|∂u
∂x
|n+1dx−

∫ L

0

Afudx. (7)

2.3 Lagrangian for the plane uniaxial strain body

For an Ludwick material body which has an uniform thickness t, occupies an area Ω in
the xy plane, with density ρ, and subject to an axial load f = (f(x, y, t), 0, 0), we assume
that displacement u = (u(x, y, t), 0, 0), strains εx = ∂u

∂x , γxy = 1
2
∂u
∂y , stress σx = K(εx

2 +

2γxy
2)

n−1
2 εx, τx = (εx

2 + 2γxy
2)

n−1
2 γxy. So the Lagrangian energy functional is given by

I(u) =
1

2

∫
Ω

ρtu̇2dxdy +
1

n+ 1

∫
Ω

tK[(
∂u

∂x
)2 +

1

2
(
∂u

∂y
)2]

n+1
2 dxdy −

∫
Ω

tfudxdy. (8)

2.4 Lagrangian for the Euler beam

For the a Ludwick Euler beam, it is assumed that u(x, y, t) = −y ∂v∂x and v = v(x, t),

f = (0, r(x, t), 0), therefore εx = ∂u
∂x = −y ∂

2v
∂x2 , εxy = 1

2 (∂u∂y + ∂v
∂x ) = 0, and εy = εxz = εyz =

εz = 0. The potential energy is given by

U =
1

n+ 1

∫
V

σxεxdV =
1

n+ 1

∫ L

0

KIn|
∂2v

∂x2
|n+1dx, (9)

where In =
∫
A
|y|n+1dA is the second moment of inertia of the cross-section for the Ludwick

material. The Lagrangian functional has the following form

I(v) =
1

2

∫ L

0

ρAv̇2dx+
1

n+ 1

∫ L

0

KIn|
∂2v

∂x2
|n+1dx−

∫ L

0

rvdx. (10)

2.5 Lagrangian for the Euler plate

Thirdly, for a flat Euler plate of thickness h occupying an area of Ω in the xy plane, the
displacement vector is of the form u = (−z ∂w∂x (x, y, t),−z ∂w∂y (x, y, t), w(x, y, t)), the body

force f = (0, 0, f(x, y, t)) and εx = −z ∂
2w
∂x2 , εy = −z ∂

2w
∂y2 , γxy = −z ∂

2w
∂xy , εz = γxz = γyz = 0.

The Lagrangian functional is

I(w) =
1

2

∫
Ω

ρhẇτwdA+
1

n+ 1

∫
V

σετdV −
∫

Ω

hfwdA, (11)

where, by using (4), the potential energy 1
n+1

∫
V
σετdV equals

Dn

n+ 1

∫
Ω

|D(w)|n−1[(
∂2w

∂x2
)2 + 2ν

∂2w

∂x2

∂2w

∂y2
+ (

∂2w

∂y2
)2 + (1− ν)(

∂2w

∂xy
)2]dA, (12)

Dn =
Khn+2

(n+ 2)2n+1(1− ν2)
, and |D(w)| =

√
(
∂2w

∂x2
)2 + 2(

∂2w

∂x∂y
)2 + (

∂2w

∂y2
)2. (13)

The quantity Dn reduces to the flexural rigidity of the Euler elastic thin plate when n = 1.
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Figure 1. Numerical solution of the rod equation(15)

3 Hamilton principle and the wave equations

The Hamilton’s principle which deal with time dependent situations. Specifically, Hamil-
ton’s pricinple requires that we seek a displacement u so that for any time interval [t1, t2],
u(t1) = u(t2) and u̇(t1) = u̇(t2), and for all displacment of the form u + τv, where
v(t1) = v(t2) = 0, v̇(t1) = v̇(t2) = 0, τ is any real number, and∫ t2

t1

d

dτ
[I(u(t) + τv(t))]|τ=0dt = 0, (14)

for all such v. It can be shown that if the displacement u satisfies equation (14) of Hamilton’s
principle, then it must also satisfy the following differential equations respectively in each
cases discussed above. For the Euler rod,

ρ
∂2u

∂t2
= K

∂

∂x
(|∂u
∂x
|n−1 ∂u

∂x
) + f, (15)

for the Euler beam

ρA
∂2v

∂t2
=

∂2

∂x2
(KIn|

∂2v

∂x2
|n−1 ∂

2v

∂x2
) + f, (16)

for the plane strain body

ρ
∂2u

∂t2
= K[

∂∂x

(
I∂u∂x+

∂∂y

(
I∂u∂y] + f, (17)

whereI = [(∂u∂x )2 + (∂u∂y )2]
n+−1

2 after a scaling of
√

2 in y.; and for the Plate

ρh
∂2w

∂t2
= Dn[

∂2

∂x2
(|D(w)|n−1(

∂2w

∂x2
+ ν

∂2w

∂y2
)) +

∂2

∂y2
(|D(w)|n−1(

∂2w

∂x2
+ ν

∂2w

∂y2
)) (18)

+(1− ν)
∂2

∂x∂y
(|D(w)|n−1 ∂

2w

∂x∂y
)]− hf,

where Dn and |D(w)| are given by (13).

4 Numerical simulation schemes

For simplicity, the above wave equations can be written in the abstract form ρü = A(u)u+f ,
which can be discretized by finite element and/or finite difference methods. The semi-
discrete equation as a result of finite element method in spatial domain takes the form of
a second order ODE in time MẌ = K(X)X + F, where M is the mass matrix, K(X) is
the nonlinear stiffness matrix, and F the load vector. Finite difference, such as Newmark,
Runge-Kutta, or improved Euler schemes can be effectively used to simulate the waves for
as solutions to these equations. Figure (1) is the displacement wave of (15) for
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