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Abstract

Acoustic traveling waves in a class of viscous, power-lawdflare investigated. Both bi-directional and unidirectib
versions of the one-dimensional (1D), weakly-nonlinearatgpn of motion are derived; traveling wave solutions
(TWS)s, special cases of which take the form of compact agebaaic kinks, are determined; and the impact of the
bulk viscosity on the structufieature of the kinks is examined. Most significantly, we paint a connection that
exists between the power-law model considered here an@teatly introduced theory of finite-scale equations.

Keywords: Nonlinear acoustics, power-law fluids, traveling wave sohs, finite-scale Navier—Stokes equations

: 1. Introduction

2 In what are commonly referred to as “power-law” fluids, theahstress obeys the Ostwald—de Wael madeél [1, 2],
s at least over limited ranges of shear rate. Under this domisg relation, the (constant) shear viscosity fioceéent
« u(> 0)is replaced by the more general quantity

per == pklk™ (k,n> 0), 1)

s Whereuer is called theeffective shear viscosit@]. Here, k denotes the shear rate, the power-law index, ank,

s which is related to the consistency ¢deient X of the Ostwald—de Wael model vi&t = pk [1], are empirically

; determined constants, where it should be notedktearries (SI) units of séct; and we observe th&t := 1 when

s n=1,ie., the Newtonian fluid case is recovered when1l.

0 Physically, the cases € (0,1) andn > 1 correspond to fluids in which the viscosity decreases (sthéaning)

10 and increases (shear-thickening), respectively, witheiasingc. Examples of the former, which are termed pseudo-
1 plastic, include polymer melts and polymer solutions; ehofthe latter, termed dilatant, include certain conceetta

.2 suspensions and other multiphase materials (seelRef. fithase therein).

13 While a great deal has been written regarding the applicaiidhe Ostwald—de Wael model to incompressible
1 flows (again, see Reﬂ[l] and those therein), we are not avfamay body of work devoted to the study of acoustic
15 phenomena in general power-law fluids. This, in spite of #ut that there are important practical and theoretical
1 reasons to further our understanding of the nonlinear pinena associated with the propagation of sound in non-
»  Newtoniaf] fluids.

18 The present Note is put forth as a step towards filling thisaagmt “hole” in the acoustics literature; its aims
1w are threefold: (i) derive in 1D the bi-directional, weakdgnlinear, equation of motion for acoustic propagation in
» fluids whose &ective shear viscosity is described bY (1); (ii) integrais PDE under the traveling wave assumption
2 and analyze the resulting solutions, which fall into twosskes, using analytical and numerical methods; and (iii),
» demonstrate connections that exist between a special ¢4@$ and both the “artificial viscosity” method of von

» Neumann and Richtmyel![4] and the compressible version aftwias come to be known disite-scale Navier—

2 Stokes theorya mathematically rigorous approach to turbulence modegeently introduced by MargoliEl[El, 6].

*Corresponding author. Teh:1-228-688-4338; fax+1-228-688-5049.
Email addresspjordan@nrlssc.navy.mil (P.M. Jordan)
11t should be mentioned here that Straughéan [3] has investigaonlinear acoustic wavesiinviscid dipolar fluids.

To be submitted to: Int. J. non-Linear Mech. 1 July 24, 2012
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2. Mathematical formulation

2.1. Governing equations and constitutive assumptions

We begin by listing the equations governing the flow a visceampressible fluid in which theffects of viscous
shear are described Yl (1). Confining our attention to pléoarperpendicular to and along theaxis, the velocity
and heat flux vectors assume the faire (u(x, t), 0, 0) andq = (q(x, t), 0, 0), respectively, while the mass density
thermodynamic pressugg absolute temperatui® and specific entropy become functions ok andt only. Thus,
conservation of mass dictates that

ot + (oU)x = 0; 2)

the momentum equatiEmakes the form

o(U; + Ul) = —px + Ox[(us + Fukiud™ un, 3)

from which the absence of all body forces has been assumddhatinearizedenergy equation, an approximation
of great importance in weakly-nonlinear fluid-acoustisgi, p. 21]

oelent = Kifyx. 4)

Here,q is assumed to satisfy Fourier's lawg(> 0) is the bulk viscosity an&(> 0) is the thermal conductivity,
both of which we take to be constant; the notairn= d/ds is employed for convenience; and we note for future
reference thati = ¢, where¢ = ¢(x,t) is the velocity potential, since the irrotationality céteh V x u = 0 is
identically satisfied under the assumed flow geometry.

To close this system, a (constitutive) relation betweenttieemodynamic variables present is required. In the
present investigation, we assume the usual quadratic ippation to the generahon-isentropicequation of state

9 = p(0.1), namely,

9 = Pe + 0eC

S e [ ©)
XCe

which is valid for both gaseand liquids provided fluctuations i@ andn about their equilibrium state values are
suficiently small; see Refl]iﬂ 9]. Heres,= (0 — 0e)/0e is termed thecondensations(> 1), a constant, is known
as thecogficient of nonlinearity[9]; y(> 1), the adiabatic inde@O], is defined as= cy/cy, where the constants
cp > ¢y > O respectively denote the specific heats at constant peessual volumege(> 0), the adiabatic sound
speed, is also a constant and represents the speed of saimeduindisturbed fluidy(> 0) is the thermal ca@cient
of volume expansion; and we assume that the equilibriure stties of all quantities, which are those appended by
an “e” subscript, are constants.

In what follows, we shall ignore theffects of thermal conduction; i.e., in place &f (4) we make fietlier)
approximationy; = 0. If we integrate this most specialized (and simple) cash@fenergy equation subject to the
initial conditionn(x, 0) = ne, then it is trivially established that

n(X.t) = 7e. (6)
Hence, we see that neglecting the RHSdf (4) has, in the prestimg, caused the flow to becommnentropic[lﬁ].
Remark 1. In the case of a perfect gﬁl% = \Jypeloe, the codlicient of the last (i.e., entropy) term il (5)

reduces tco:,;l [|1__’l|], and the coficient of nonlinearity can be expressed in terms of the rétgpecific heats via the
simple relations = (y + 1)/2; seel[d].

20f course,[[B) is the momentum equation émly the x-component of; in contrast, those for the- andz-components have become simply
9y = 0 andp, = 0, respectively, under the assumed flow geometry.
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2.2. Deriving a bi-directional, weakly-nonlinear equatiof motion
To this end, we first substitutgl (6) in{d (5), thus elimingtinfrom further consideration and reducing the latter to

0 =pet+oeCls+(B-1] (-l<xs<1l) (7
In turn, using[(¥) to eliminate from (3) yields
(Ut + Ut) = —0eCa[S+ (B — 1)« + udx[(u /1 + SKIUd™)uy. (8
Next, we introduce the following dimensionless quantities
¢°=¢/(VL), W =u/V, X =x/L, t°=t(ce/L), 9)

where the positive constan¥sandL denote a characteristic speed and (macroscopic) lengghectvely, and replace
o With oe(1 + s) in @) and [B). Thus, after a few additional manipulatichs, former and latter equations become

S + €SxPx + €pxx(1+5) =0, (10)

e(1+ 90u¢r + 3€(d)’] = —0us+ (B~ 1)S] + e(Re) "ul(ua/p + 5016xx" )bl 11)

In this systemge = V/ce is the Mach number, where the weakly-nonlinear approxiomatequires that < 1 be
assumed henceforth; Re c.L/v is a Reynolds number, where= u/oe denotes the kinematic viscosity; we have
seto = k(V/L)", where we note thatr = 1 whenn = 1; and here and henceforth, all diamond superscripts are
suppressed for typographical convenience.

Dividing (IT) bye(1+ s) and then expanding in a binomial series under the assumiptie O(¢), another demand
of the weakly-nonlinear approximation, yields, after reaaging terms and simplifying,

Ofon + 1e(@)? + € s+ (B-3/2F + -1 = (ReY (L - s+ - )o(a/u + 40rldal™ bed.  (12)

Neglecting terms of)(e?) andO(e/Re) and then applying to both sides of EqL{12) yields, after some rearrangement
of term,

Ofon + Sedn(@)? + € L + 2(8 - 3/2)s)s — (Re) dl(us/ut + Soridud™ b }= O, (13)
from which it follows that
b + 3€0i(d)” + € [1+2(8 - 3/2)s]s = (Re) il(us/u + §oribxd™ od (14)

where the resulting function of integration has been seéto.z

Finally, if we now eliminates in (I4) using[[ID), followed by the elimination sfinds in the resulting expression
using the relatiors = —eg; + O(€?), then, after neglecting terms 6{e%) and simplifying, we obtain a single, weakly-
nonlinear equation of motion in terms of the velocity poteinspecifically,

¢ — [1 = 2e(B — L)pe] pxx + Eat(¢x)2 = (Re)_lat[(HB/ﬂ + %0'|¢xx|n_1)¢xx]- (15)

Here, it should be noted that, had wetneglected the RHS of4), then the (positive) quantity (1)/Pr would have
been added to the ratigs/u in (I5), where P c,u/K denotes the Prandtl numbkr [2, p- 80].

At this juncture, the casgg = 0, which corresponds to monatomic gases, agd- 0, which corresponds to
mostall other common fluids under ordinary conditions [10], mhestreated separately, an action made necessary by
the degeneracy created (In]15)) when= 0 is taken.

Remark 3. In the case of a Newtonian fluid, i.e., for= 1, (I8) reduces to

¢t — [1 = 2€(B — 1)pt] pxx + fat(¢x)2 = (Ref)_lfﬁtxx’ (16)

which is the special case of the Blackstock—Lesser—SeeBaghiton (BLSC) equation corresponding to a non-
thermally conducting Newtonian fluid; see, e.qg., Refl [ those therein. Here, Re c.L/v, is a second Reynolds
number, where, := v(g1 + vg/v) can be termed the kinematic longitudinal fia@ent of viscosity, p. 38] and we
have sevg := oz us.
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3. Traveling waves: Monatomic gases

3.1. Ansatz and associated ODE

Considering the casas = 0 first, we begin our analysis with the following observati@ince [I5) is invariant
under the transformation— —x, we need only seek, without loss of generality, right-rumgrwaveforms. Introducing
then the ansaig(x, t) = F(¢), whereé = x— At is the wave variable and the (constant) wave spesdtrictly positive,
we integrate once wet; as a result[{15) reduces to the ODE

w£/7) £ N-1 2 2 % . 40
W = (L= A2 + BAf2+ Ry, where v .=—(—), (17)
3\Re
a prime denotes/di¢, we have sef (¢) := F’(£), andf; is the constant of integration. Assuming TWSs in the form
of kinks[lﬂ], we impose and enforce the asymptotic conditibrs 1,0 as¢ — Fco. Thus,&; = 0 and, just as in the
case of[(IB), the speed of the (dispersed) shock-frontis

+ V4 + e2p2
A= u’ (18)
where we observe that> 1; see Ref/[[12§3.1]. Solving now forf’, we obtain theassociateddDE for the case of
monatomic gases, namely,

f)l/n.

_F = s(f— £V = 2A(f),  where %:z( -
4

19)
Here,|f’| has been replaced withf’ sincef’ < 0 is expected in the case of right-running kinks.

3.2. Stability results and quadrature

Clearly, the equilibria of({119) aré = {0,1). Itis also clear thah(f) € C*[0,1] whenn < 1. Forn > 1, however,
A(f) € C[0, 1] but, since

lim dhv__ -2t
df ~ n(f - U’

f—0* (20)

i
f

57| = lim (d_A) =o (n>1), where

f-1-\ df

A(f) ¢ CY0,1]. Thus, whem > 1 the slope of the phase portrait, i.e., the plotAofis. f, is undefined aboth
equilibria. This means that ateither equilibria is theLipschitz conditionsatisfied; therefore, uniquenEsis not
assured agitherequilibria whem > 1.

Returning now to[(1]9), we lan := n~! (to simplify the typesetting), separate variables, anad ihéegrate, the
result of which is the quadrature

f% =-xE+ Ry (0< f <1, (21)

whereR; is the constant of integration. Because the analyticatgire of the resulting integral curvedtdirs, the
casean > 1 andm < 1 will be considered separately. Moreover, for both coneeoé of presentation and, more
importantly, ensuring the TWSs obtained are bounded oweettiire real line, in what followsf(0) = 1/2 (i.e.,

f = 1/2 at the wavefronf = 0) shall, without loss of generality, henceforth be assumed

3For an interesting discussion of this issue in the contexionfinear elasticity, see Saccomaridi [15].



w 3.3. Thecasem 1

112 Expanding the integrand above in a binomial series, whigersissible in this case sind€0) < (0, 1) implies
us  that the resulting primitive will be such théte (0, 1), and then integrating term-by-term, we obtain, aftevisgl for
ua  8Rp and simplifying, the following exact (but generally imptjcsolution:

s = —ZTk(f), for 0<f<1. (22)
k=0
us  Here,
F(m + k)[fk—m+l _ (%)k—m+l]
, kegm-1,
r(m)(k—m+ 1)k!
T(f) = (23)
F(2m—1)|n(2f)’ Kem-1
I2(m)
us  WhereI'(-) denotes the gamma function.
117 Remark 4. Form = 1, the series if(22) can be summed exactly; the result &, sifnplifying,
_neh+ S fk_(%)k—| f 24
=00+ ) = in( ) (22)
us from which it is easily established th&tin this case assumes the form ofaylor shocki.e.,
exp(—
t@) = P 111 _tanngag)]  (m=1) (25)

T l+explué) 2
us  Thus, as expected, setting= (n =)1 allows us to recover the well known TWS of Burgers’ equatio
120 Remark 5. Whenm = 3/2, the series in(22) can again be summed exactly and thenialipexplicit solution

122 easily established:

16+ 5282 — 3£ \J16 + 3282

o = L NI EE (mogp) (26)
2(16+ »2£2)

122 from which we see that in this case assumes the form ofagebraickink.

s 3.4. Thecasem 1

124 In this case the integral il .(R1) can be directly evaluated, @dosed-form expressions obtained. However, care
125 must now be exercised because winer: 1, f = {0, 1} are no longer the asymptotic limiting values fofinstead,

s they are the equations which define ﬂsm/elopeE;[IE] of the one-parameter (i.e;) family of integral curves that

; satisfy [19). What this means, of course, is the followirfgnkk 1, thenf(¢) = 0, 1 are attained dinite values of¢.

128 Using theIntegrate[] command, which is part of the software packagedmarica (ver. 5.2), it is a straight-

1o forward matter to establish thatiif < 1, then the following satisfies bo{h {19) and the wavefrontdition f (0) = 1/2:

130

1

Y]

_f1, foré<é; _oF(l-mm2-mf) 4™Ir(2 - m)r
e = {O, for & > &r; % = (m-1)fm1 (m-1r@E/2-m)’ for O<f<1 7)
wm  Here,zF; denotes the Gauss hypergeometric series,
B -T(2-m)+/r B [MP(9-m) + 2(12- 13m)[T'(2 - m) V7
o= gmma-mrez-m 9 R i o mE-mGE-mE- mrG2—m’ (28)
132 Remark 6. Form = 1/2, (21) yields the explicit solution
1, < —:—2L7Z'%_1
f(&) = Ssin?[3 (et - 3m)|. —3mact < &< Fms? (m=1/2), (29)
0, &> %ﬂ%_l

w  aresult which can also be obtained from REf. [4, p. 234]. Herg reduce tm%nz‘l, respectively.

4Recall the discussion in sect. 3.2 regarding the questiomigieness.
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3.5. Mild discontinuities
For the casen < 1, it can be shown that

o, me (0,%)
[l =[f"Tr=33s% m=3 (us = 0), (30)
0, me (3.1)

where [§] . r, the amplitudes of the jumpsared by a functior§ across the planes= &g, are defined here as
= lim § - lim and = lim § - lim g, 31
[31c Jm 5 Jm, S [51r Jn 5 Jm, S (31)

and we have used the fact that

d[2Fil-mm2-mf)]) > d? [2F1(1-mm2-m f)
" o_ 2 2 21
M=—rd-m {d_f[ = }} afz =

= ms?(1 - 2f)(f — £2)2™ 1, (32)

Evidently, if 0 < m < % thenf e CYR) but f ¢ C?(R), with the casem = 1/2 (i.e.,n = 2) admittingmild dis-
continuitiesof the lowest possible order, namely, two; see Ref. [17]. dntast,f € CX(R) for every% <m«<1;
however, it can be shown that higher-order mild discontiasido occur for certain values wofin this (upper) range: If
m=1-1/N, whereN > 3 is an integer, theff fM] g o 5N.

Remark 7. Form € (0, %), the compact kinks described in this section are, quidélt very similar to those
uncovered by Destrade et e{ﬂlS], who considered tranevigaseling waves in a class of nonlinear viscoelastic
media.

Remark 8. It is noteworthy that acoustic mild discontinuities of ordeo have also been predicted in inviscid
dipolar fluids; again, see Ref] [83], wherein such discontinuities are termed “dipolar steaves”.

4. Traveling waves: Liquids and non-monatomic gases

4.1. Ansatz, associated ODEs, and representative spexsalsc

Seeking TWSs as we did in sect. 3.1, but now under the assompdi > O, it is readily established that the
associated ODE in this case is

a(—f)" = = 5 (f - 1), (33)
where we have set 4
= (@) and i = Re(e"i) (34)
3 MUB HMB

Here, once again, we have assumed the argatz) = F(£), with f = F’; the wave speed is given by {18); and we
have imposed and enforced the asymptotic conditfors 1,0 as¢é — Foo.
fn=1, % 2,3, 4, then one can solve fdr in terms off; indeed, with little dificulty it can be shown that

2:°(1+ ) }(f - £2),

n
f’ :—% ?+ 2 f(L-f)—ara?+4sf(1-f), n
n

—at[1- Y1+ das T(1- 1)),

(35)

N N -

s
3

while obtaining such expressions for the cases3, 4 requires use of the more complicated formulas of Cardado an
Ferrari, respectively. Additionally, phase-plane anedyseveal that all three ODEs in {35) admit kink-type TWSs,
provided of course that(0) € (0, 1), where we recall that the= 1 case corresponds to Burgers’ equation.
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For the general case> 0, the following series solution df (B3) can be readily obéai by the method of successive
approximations:

_1 171 [27:_1(_%1) - 1]7:_1(_%) 3, ..
Hﬂ—2+f'(4ﬁ+{ 67 (71 E 4, (36)
where we have again takdif0) = 1/2 and
)=~ = [D+al-H1 (G<0) (37

4.2. Numerical results

On the other hand, using thi®Solve [ 1 command, which is alsoffered as part of the software packageriv
EmMaTIcA (Ver. 5.2), it is not diicult, for the three cases given [0{35) at least, to numdyigategrate [3B), which we
now do subject to the “initial conditionf(0) = 0.5. In Fig. 1 are shown the resulting solution profiles, all dieh, as
expected, are kinks. From these curves it is clear|fiéQ)| and the rate at whicl approaches its asymptotic values
are both increasing functions af The behavior off’(0)|, however, indicates that the shock thicknessgs, 0),
corresponding to these three curves (ne-, 1, % 2) are all decreasing functionsfHere, forf(0) = 1/2, the shock
thicknesses admitted by the kink TWSs of the ODE§in (35) are

41+ a)/5", n=1,
n= 4|2a2+%'—26y Vo212, n= z, (38)
20|1- VI+as |, n=2
where in the present conteyt:= |f’(0)|~* for all n > 0.
f
. I . . . . 1 L L L L ! L L L L L L L ) et T f
-7.5 -5 -2.5 | 2.5 5 7.5

Figure 1:f vs.& based on(33) for = 0.5 ands* = 2.2. Bold-solid:n = 2. Thin-solid:n = 1 (Burgers’ equation). Thin-broken:= 1/2.
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4.3. The special cage; > 0,n=2

In this subsection we present a number of analytical resotthiding the exact solution, for this important special
case; one which will figure prominently in sect. 6 below. Ourgose here is to illustrate, to a limited extent at least,
the behavior of the resulting kink profile, as well as exantireecase of vanishings.

Now, on integrating the = 2 case of[(3b) and then enforcing the wavefront condifi(®) = 1/2, the following
exact, but implicit, expression for the velocity field is aloted:

2V (f - 3)

Ny +tani'[2(f - 3)]

- %{M sin‘l[

+tanh?t 2f - )

]} fe(0,1). (39)
\/1 +ase® — dase(f - )2

While exact, the solution we have just determined is alsteqeomplicated, and as such provides little in the way of
physical insight. Fortunately, however, approxinjasgmptotic expression fdfr, which are both simpler than their
exact counterpart and explicit, can be derived directlyf{@9).

To begin with, we expand the RHS ¢f{39) abdut 1/2. This yields, after simplifying, the power series

- 2{ (0 vIreR) - § (B o - ) 41 @O

from which an explicit small¢| approximation forf can be obtained by neglecting termsajf f — 1/2)%] and then
using Cardano’s formula to solve the resulting cubic.

In contrast, expanding the RHS 6f{39) abdut 0 and then neglecting terms 6{ f2), it is not difficult to derive
the following explicit large¢ approximation:

=3

ax®
1+ asx

f(&)~ L+ a%')-lwo{ 1+ asx® exp[ Vs sin‘l( H exp(—%'g)} (> 1/, (41)

from which it is a simple matter to establish that under thesspnt special case,

£(&) ~ (L+ asx®)12 exr{ Var sin‘l( ax H explsd) (£ — o), (42)
1+ as®
Here, Wy(:) denotes the principal branch of the Lamb¥ftfunction; see, e.g., Reﬂ:ﬂl9, Appendix B] and those
therein. In the interest of brevity, we leave the task of deiring the corresponding expressions for the —co
asymptotic limit of f to the reader.
In concluding this subsection we observe that (39) admésthallug approximation

1, <-4
fQ) ~ {sif|3(Vbs—3n)], —Le<i<& (b>1), (43)
0, {24

where, for convenience, we have get= &/(2a), b := das*, and{; = %nb‘lfz. As expected, we find tha (B9)
assumes the character bf29) whenis “near” zero.

5. Unidirectional approximation: A generalized Burgers’ equation for propagation in power-law fluids

First, we divide [Ib) by [+ 2¢(B — 1)¢¢], which can never be zero, expand each occurrence of theroeail of
this quantity in a binomial series (sinee< 1), and then neglect tern@(e?) andO(e/Re). Thus, after rearranging
terms and simplifying, our equation of motion becomes

Pt — Pxx + Eat[(¢x)2 +(B- 1)(¢t)2] = (Re)_lat[(ﬂB/,U + %0'|¢xx|n_1)¢xx]’ (44)
8
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which forn = 1 becomes the special case of Kuznetsov’s equd@r{__[il,cjr?esponding to a non-thermally con-
ducting Newtonian fluid.

Since we have confined our attention to right-running wawescan, based on th@&(1) approximationpy ~ —¢x,
replac the wave operator and the nonlinear (i.e., “small”) teg@)?(on the LHS of [2%) with 2,(; + dx) and )2,
respectively. This then leads us to consider

201(0; + 0 + eBi($x)? = (Re) ‘dil(ua/u + 501dxx" ) bxd (45)
which after integrating with respect t@nd then dierentiating with respect wbecomes
2(0¢ + 0x)U + 2eBut = (Re) 0x[(us/p + %U'|Ux|n_1)ux]’ (46)

where we have used the fact that ¢«. Introducing the change of variables= x —t andt = t, and then dividing by
two, (48), reduces to
U + €8Uly = %(Re)_lax[(ﬂB/H + %U'|Ux|n_l)ux]~ (47)

Here, we observe that for= 1, (47) reduces to the classic Burgers’ equation [7, 20]levor 1g = 0 it is identical
in form to Ref. , Eqg. (2)].

Remark 9. Theug > 0 cases of[{47) admit, with(x,t) = f(£), the same TWSs as the corresponding cases

of (I8); however, undef{37) the wave speed is given byes/2; again, see Ref_[21].

Remark 10. It should be noted thaf{#4) can readily be recast to exhibitrdinearity of the “RSGC type”. As
such, the resulting PDE would, on settimg: 1, reduce to the RSGC special case of Rel. [12, Eq. (19)] spording
to a non-thermally conducting Newtonian fluid; see also @] and those therein.

6. Discussion

While the forgoing analysis has reveled a number of new fggliegarding weakly-nonlinear acoustic waves in
this class of power-law fluids, it is the connection betwéwndpecial case = 2, which we observe does not appear to
correspond to a particular fluid, polymer solution, etcd trefinite-scaleversion of the compressible Navier—Stokes
equations (or FSNS for short) that is, in our view, the moriesting of all.

Referring the reader to Ref] [B 6] for the details of FSNSthiethe connection we have found is the following:
Theug = 0 andug > 0 sub-cases of the = 2 case of[(Ib) yield TWSs that aidenticalin form to those admitted
by the inviscid and viscous versions, respectively, of t&&\5 formulation examined in Ref] [6]; in particular, the
quantities u, ye%, and ¢ + 1) that appear in Reﬂ][G, Eq. (24)] corresp,nnbspectively, tof, &/, Vaa, ands®
in 39)s.

Evidently, the averaging process used to obtain the FSNS tine special case of the compressible (1D) Navier—
Stokes’ equations correspondingute= 0, where the constant of proportionaligycarries (Sl) units of rfysec, and
the bulk viscosity neglected, gives rise to gffectiveviscosity function that is identical in form to the casg > 0,

n = 2 of the present study, but withplaying the role ofrg (seeRemark 3); i.e., as alluded to above, the inviscid
limit of Ref. [6, Eq. (24)] corresponds to the cage = 0, n = 2 (see sect. 3). Also of interest is the fact thathe
averaging length parameter in Réf. [6], corresponds to thaatity 4kv/L) v2/3 (with n = 2) here.

Given the above, it not surprising that the present study la#s a close connection to the work carried out in
Ref. B], wherein the notion of “artificial viscosity” was $irintroduced in the context of gas dynamics. To see this,
one need only compare thg = 0, n = 2 special case of3) with Ref) [4, Eq. (3) and (8)]; see &smark 6.

And lastly, it should be noted that, in addition to compaaotds, both semi-compact front-type, as well as compact
pulse-type, TWSs have also been predicted in various tyfggstinuous media; see, e.g., Reéj [19, 23], respectively
and those therein.

5See, e.g., Crighton's [P0, p. 16] treatment of the thernumis version of {16).
6This means that the results presented in sect. 4.3 also apRigf. [6, Eq. (24)] antr its solution.

9
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