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A note on acoustic propagation in power-law fluids: Compact kinks, mild
discontinuities, and a connection to finite-scale theory

Dongming Weia, P.M. Jordanb,∗

aDepartment of Mathematics, University of New Orleans, New Orleans, LA 70148, USA
bAcoustics Div., U.S. Naval Research Laboratory, Stennis Space Ctr., MS 39529, USA

Abstract

Acoustic traveling waves in a class of viscous, power-law fluids are investigated. Both bi-directional and unidirectional
versions of the one-dimensional (1D), weakly-nonlinear equation of motion are derived; traveling wave solutions
(TWS)s, special cases of which take the form of compact and algebraic kinks, are determined; and the impact of the
bulk viscosity on the structure/nature of the kinks is examined. Most significantly, we pointout a connection that
exists between the power-law model considered here and the recently introduced theory of finite-scale equations.

Keywords: Nonlinear acoustics, power-law fluids, traveling wave solutions, finite-scale Navier–Stokes equations

1. Introduction1

In what are commonly referred to as “power-law” fluids, the shear stress obeys the Ostwald–de Wael model [1, 2],2

at least over limited ranges of shear rate. Under this constitutive relation, the (constant) shear viscosity coefficient3

µ(> 0) is replaced by the more general quantity4

µeff := µk|κ|n−1 (k, n > 0), (1)

whereµeff is called theeffective shear viscosity[1]. Here,κ denotes the shear rate;n, the power-law index, andk,5

which is related to the consistency coefficientK of the Ostwald–de Wael model viaK = µk [1], are empirically6

determined constants, where it should be noted thatk carries (SI) units of secn−1; and we observe thatk := 1 when7

n = 1, i.e., the Newtonian fluid case is recovered whenn = 1.8

Physically, the casesn ∈ (0, 1) andn > 1 correspond to fluids in which the viscosity decreases (shear-thinning)9

and increases (shear-thickening), respectively, with increasingκ. Examples of the former, which are termed pseudo-10

plastic, include polymer melts and polymer solutions; those of the latter, termed dilatant, include certain concentrated11

suspensions and other multiphase materials (see Ref. [1] and those therein).12

While a great deal has been written regarding the application of the Ostwald–de Wael model to incompressible13

flows (again, see Ref. [1] and those therein), we are not awareof any body of work devoted to the study of acoustic14

phenomena in general power-law fluids. This, in spite of the fact that there are important practical and theoretical15

reasons to further our understanding of the nonlinear phenomena associated with the propagation of sound in non-16

Newtonian1 fluids.17

The present Note is put forth as a step towards filling this apparent “hole” in the acoustics literature; its aims18

are threefold: (i) derive in 1D the bi-directional, weakly-nonlinear, equation of motion for acoustic propagation in19

fluids whose effective shear viscosity is described by (1); (ii) integrate this PDE under the traveling wave assumption20

and analyze the resulting solutions, which fall into two classes, using analytical and numerical methods; and (iii),21

demonstrate connections that exist between a special case of (1) and both the “artificial viscosity” method of von22

Neumann and Richtmyer [4] and the compressible version of what has come to be known asfinite-scale Navier–23

Stokes theory, a mathematically rigorous approach to turbulence modeling recently introduced by Margolin [5, 6].24

∗Corresponding author. Tel.:+1-228-688-4338; fax:+1-228-688-5049.
Email address:pjordan@nrlssc.navy.mil (P.M. Jordan)

1It should be mentioned here that Straughan [3] has investigated nonlinear acoustic waves ininviscid dipolar fluids.
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2. Mathematical formulation25

2.1. Governing equations and constitutive assumptions26

We begin by listing the equations governing the flow a viscous, compressible fluid in which the effects of viscous27

shear are described by (1). Confining our attention to planarflow perpendicular to and along thex-axis, the velocity28

and heat flux vectors assume the formu = (u(x, t), 0, 0) andq = (q(x, t), 0, 0), respectively, while the mass density̺,29

thermodynamic pressure℘, absolute temperatureϑ, and specific entropyη become functions ofx andt only. Thus,30

conservation of mass dictates that31

̺t + (̺u)x = 0; (2)

the momentum equation2 takes the form32

̺(ut + uux) = −℘x + ∂x[(µB +
4
3µk|ux|n−1)ux], (3)

from which the absence of all body forces has been assumed; and thelinearizedenergy equation, an approximation33

of great importance in weakly-nonlinear fluid-acoustics, is [7, p. 21]34

̺eϑeηt = Kϑxx. (4)

Here,q is assumed to satisfy Fourier’s law;µB(≥ 0) is the bulk viscosity andK(> 0) is the thermal conductivity,35

both of which we take to be constant; the notation∂ς := ∂/∂ς is employed for convenience; and we note for future36

reference thatu = φx, whereφ = φ(x, t) is the velocity potential, since the irrotationality condition ∇ × u = 0 is37

identically satisfied under the assumed flow geometry.38

To close this system, a (constitutive) relation between thethermodynamic variables present is required. In the39

present investigation, we assume the usual quadratic approximation to the general,non-isentropicequation of state40

℘ = ℘(̺, η), namely,41

℘ = ℘e+ ̺ec
2
e

[

s+ (β − 1)s2 +

(

γ − 1

χc2
e

)

(η − ηe)

]

, (5)

which is valid for both gasesand liquids provided fluctuations in̺ andη about their equilibrium state values are42

sufficiently small; see Ref. [8, 9]. Here,s = (̺ − ̺e)/̺e is termed thecondensation; β(> 1), a constant, is known43

as thecoefficient of nonlinearity[9]; γ(> 1), the adiabatic index [10], is defined asγ = cp/cv, where the constants44

cp > cv > 0 respectively denote the specific heats at constant pressure and volume;ce(> 0), the adiabatic sound45

speed, is also a constant and represents the speed of sound inthe undisturbed fluid;χ(> 0) is the thermal coefficient46

of volume expansion; and we assume that the equilibrium state values of all quantities, which are those appended by47

an “e” subscript, are constants.48

In what follows, we shall ignore the effects of thermal conduction; i.e., in place of (4) we make the (further)49

approximationηt = 0. If we integrate this most specialized (and simple) case ofthe energy equation subject to the50

initial conditionη(x, 0) = ηe, then it is trivially established that51

η(x, t) = ηe. (6)

Hence, we see that neglecting the RHS of (4) has, in the present setting, caused the flow to becomehomentropic[10].52

53

Remark 1. In the case of a perfect gas [10],ce =
√

γ℘e/̺e, the coefficient of the last (i.e., entropy) term in (5)54

reduces toc−1
p [11], and the coefficient of nonlinearity can be expressed in terms of the ratio of specific heats via the55

simple relationβ = (γ + 1)/2; see [9].56

2Of course, (3) is the momentum equation foronly the x-component ofu; in contrast, those for they- andz-components have become simply
℘y = 0 and℘z = 0, respectively, under the assumed flow geometry.
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2.2. Deriving a bi-directional, weakly-nonlinear equation of motion57

To this end, we first substitute (6) into (5), thus eliminating η from further consideration and reducing the latter to58

℘ = ℘e+ ̺ec
2
e[s+ (β − 1)s2] (−1≪ s≪ 1). (7)

In turn, using (7) to eliminate℘ from (3) yields59

̺(ut + uux) = −̺ec
2
e[s+ (β − 1)s2]x + µ∂x[(µB/µ +

4
3k|ux|n−1)ux]. (8)

Next, we introduce the following dimensionless quantities:60

φ⋄ = φ/(VL), u⋄ = u/V, x⋄ = x/L, t⋄ = t(ce/L), (9)

where the positive constantsV andL denote a characteristic speed and (macroscopic) length, respectively, and replace61

̺ with ̺e(1+ s) in (2) and (8). Thus, after a few additional manipulations,the former and latter equations become62

st + ǫsxφx + ǫφxx(1+ s) = 0, (10)

63

ǫ(1+ s)∂x[φt +
1
2ǫ(φx)2] = −∂x[s+ (β − 1)s2] + ǫ(Re)−1∂x[(µB/µ +

4
3σ|φxx|n−1)φxx]. (11)

In this system,ǫ = V/ce is the Mach number, where the weakly-nonlinear approximation requires thatǫ ≪ 1 be64

assumed henceforth; Re= ceL/ν is a Reynolds number, whereν = µ/̺e denotes the kinematic viscosity; we have65

setσ := k(V/L)n−1, where we note thatσ = 1 whenn = 1; and here and henceforth, all diamond superscripts are66

suppressed for typographical convenience.67

Dividing (11) byǫ(1+ s) and then expanding in a binomial series under the assumption |s| = O(ǫ), another demand68

of the weakly-nonlinear approximation, yields, after re-arranging terms and simplifying,69

∂x

{

φt +
1
2ǫ(φx)

2 + ǫ−1[s+ (β − 3/2)s2 + · · · ]
}

= (Re)−1(1− s+ · · · )∂x[(µB/µ +
4
3σ|φxx|n−1)φxx]. (12)

Neglecting terms ofO(ǫ2) andO(ǫ/Re) and then applying∂t to both sides of Eq. (12) yields, after some rearrangement70

of term,71

∂x

{

φtt +
1
2ǫ∂t(φx)2 + ǫ−1[1 + 2(β − 3/2)s]st − (Re)−1∂t[(µB/µ +

4
3σ|φxx|n−1)φxx]

}

= 0, (13)

from which it follows that72

φtt +
1
2ǫ∂t(φx)2 + ǫ−1[1 + 2(β − 3/2)s]st = (Re)−1∂t[(µB/µ +

4
3σ|φxx|n−1)φxx], (14)

where the resulting function of integration has been set to zero.73

Finally, if we now eliminatest in (14) using (10), followed by the elimination ofsandsx in the resulting expression74

using the relations= −ǫφt +O(ǫ2), then, after neglecting terms ofO(ǫ2) and simplifying, we obtain a single, weakly-75

nonlinear equation of motion in terms of the velocity potential, specifically,76

φtt − [1 − 2ǫ(β − 1)φt]φxx+ ǫ∂t(φx)
2 = (Re)−1∂t[(µB/µ +

4
3σ|φxx|n−1)φxx]. (15)

Here, it should be noted that, had wenotneglected the RHS of (4), then the (positive) quantity (γ − 1)/Pr would have77

been added to the ratioµB/µ in (15), where Pr= cpµ/K denotes the Prandtl number [2, p. 80].78

At this juncture, the casesµB = 0, which corresponds to monatomic gases, andµB > 0, which corresponds to79

most/all other common fluids under ordinary conditions [10], mustbe treated separately, an action made necessary by80

the degeneracy created (in (15)) whenµB = 0 is taken.81

Remark 3. In the case of a Newtonian fluid, i.e., forn = 1, (15) reduces to82

φtt − [1 − 2ǫ(β − 1)φt]φxx+ ǫ∂t(φx)2 = (Reℓ)−1φtxx, (16)

which is the special case of the Blackstock–Lesser–Seebass–Crighton (BLSC) equation corresponding to a non-83

thermally conducting Newtonian fluid; see, e.g., Ref. [12] and those therein. Here, Reℓ = ceL/νℓ is a second Reynolds84

number, whereνℓ := ν( 4
3 + νB/ν) can be termed the kinematic longitudinal coefficient of viscosity [13, p. 38] and we85

have setνB := ̺−1
e µB.86
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3. Traveling waves: Monatomic gases87

3.1. Ansatz and associated ODE88

Considering the caseµB = 0 first, we begin our analysis with the following observation: Since (15) is invariant89

under the transformationx 7→ −x, we need only seek, without loss of generality, right-running waveforms. Introducing90

then the ansatzφ(x, t) = F(ξ), whereξ = x−λt is the wave variable and the (constant) wave speedλ is strictly positive,91

we integrate once wrtξ; as a result, (15) reduces to the ODE92

λν∗ f ′| f ′|n−1 = (1− λ2) f + ǫβλ f 2 + K1, where ν∗ :=
4
3

(

σ

Re

)

, (17)

a prime denotes d/dξ, we have setf (ξ) := F′(ξ), andK1 is the constant of integration. Assuming TWSs in the form93

of kinks[14], we impose and enforce the asymptotic conditionsf → 1, 0 asξ → ∓∞. Thus,K1 = 0 and, just as in the94

case of (16), the speed of the (dispersed) shock-front is95

λ =
ǫβ +

√

4+ ǫ2β2

2
, (18)

where we observe thatλ > 1; see Ref. [12,§3.1]. Solving now forf ′, we obtain theassociatedODE for the case of96

monatomic gases, namely,97

− f ′ = κ( f − f 2)1/n = κΛ( f ), where κ :=
(

ǫβ

ν∗

)1/n

. (19)

Here,| f ′| has been replaced with− f ′ since f ′ ≤ 0 is expected in the case of right-running kinks.98

3.2. Stability results and quadrature99

Clearly, the equilibria of (19) arēf = {0, 1}. It is also clear thatΛ( f ) ∈ C1[0, 1] whenn < 1. Forn > 1, however,100

Λ( f ) ∈ C[0, 1] but, since101

lim
f→0+

∣

∣

∣

∣

∣

dΛ
d f

∣

∣

∣

∣

∣

= lim
f→1−

(

dΛ
d f

)

= ∞ (n > 1), where
dΛ
d f
=

1− 2 f

n( f − f 2)1−1/n
, (20)

Λ( f ) < C1[0, 1]. Thus, whenn > 1 the slope of the phase portrait, i.e., the plot ofΛ vs. f , is undefined atboth102

equilibria. This means that atneither equilibria is theLipschitz conditionsatisfied; therefore, uniqueness3 is not103

assured ateitherequilibria whenn > 1.104

Returning now to (19), we letm := n−1 (to simplify the typesetting), separate variables, and then integrate, the105

result of which is the quadrature106

∫

d f
( f − f 2)m

= −κξ + K2 (0 < f < 1), (21)

whereK2 is the constant of integration. Because the analytical structure of the resulting integral curves differs, the107

casesm ≥ 1 andm < 1 will be considered separately. Moreover, for both convenience of presentation and, more108

importantly, ensuring the TWSs obtained are bounded over the entire real line, in what follows,f (0) = 1/2 (i.e.,109

f = 1/2 at the wavefrontξ = 0) shall, without loss of generality, henceforth be assumed.110

3For an interesting discussion of this issue in the context ofnonlinear elasticity, see Saccomandi [15].
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3.3. The case m≥ 1111

Expanding the integrand above in a binomial series, which ispermissible in this case sincef (0) ∈ (0, 1) implies112

that the resulting primitive will be such thatf ∈ (0, 1), and then integrating term-by-term, we obtain, after solving for113

K2 and simplifying, the following exact (but generally implicit) solution:114

κξ = −
∞
∑

k=0

Tk( f ), for 0 < f < 1. (22)

Here,115

Tk( f ) =











































Γ(m+ k)[ f k−m+1 − ( 1
2)k−m+1]

Γ(m)(k−m+ 1)k!
, k , m− 1,

Γ(2m− 1) ln(2f )
Γ2(m)

, k = m− 1,

(23)

whereΓ(·) denotes the gamma function.116

Remark 4. Form= 1, the series in (22) can be summed exactly; the result is, after simplifying,117

−κξ = ln(2 f ) +
∞
∑

k=1

f k − ( 1
2)k

k
= ln

(

f
1− f

)

, (24)

from which it is easily established thatf in this case assumes the form of aTaylor shock, i.e.,118

f (ξ) =
exp(−κξ)

1+ exp(−κξ) =
1
2

[

1− tanh(12κξ)
]

(m= 1). (25)

Thus, as expected, settingm= (n =)1 allows us to recover the well known TWS of Burgers’ equation.119

Remark 5. Whenm = 3/2, the series in (22) can again be summed exactly and the following explicit solution120

easily established:121

f (ξ) =
16+ κ2ξ2 − κξ

√

16+ κ2ξ2

2(16+ κ2ξ2)
(m= 3/2), (26)

from which we see thatf in this case assumes the form of analgebraickink.122

3.4. The case m< 1123

In this case the integral in (21) can be directly evaluated, and closed-form expressions obtained. However, care124

must now be exercised because whenm < 1, f̄ = {0, 1} are no longer the asymptotic limiting values off ; instead,125

they are the equations which define theenvelopes4 [16] of the one-parameter (i.e.,K2) family of integral curves that126

satisfy (19). What this means, of course, is the following: If m< 1, thenf (ξ) = 0, 1 are attained atfinitevalues ofξ.127

Using theIntegrate[] command, which is part of the software package Mathematica (ver. 5.2), it is a straight-128

forward matter to establish that ifm< 1, then the following satisfies both (19) and the wavefront condition f (0) = 1/2:129

130

f (ξ) =















1, for ξ ≤ ξL ;

0, for ξ ≥ ξR;
κξ =

2F1(1−m,m; 2−m; f )
(m− 1) f m−1

− 4m−1Γ(2−m)
√
π

(m− 1)Γ(3/2−m)
, for 0 < f < 1. (27)

Here,2F1 denotes the Gauss hypergeometric series,131

ξL =
− Γ(2−m)

√
π

41−mκ(1−m)Γ(3/2−m)
, and ξR =

[m2(9−m) + 2(12− 13m)]Γ(2−m)
√
π

41−mκ(1−m)(2−m)(3−m)(4−m)Γ(3/2−m)
. (28)

Remark 6. Form= 1/2, (27) yields the explicit solution132

f (ξ) =



























1, ξ ≤ − 1
2πκ

−1

sin2
[

1
2(κξ − 1

2π)
]

, − 1
2πκ

−1 < ξ < 1
2πκ

−1

0, ξ ≥ 1
2πκ

−1

(m= 1/2), (29)

a result which can also be obtained from Ref. [4, p. 234]. Here, ξL,R reduce to∓ 1
2πκ

−1, respectively.133

4Recall the discussion in sect. 3.2 regarding the question ofuniqueness.
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3.5. Mild discontinuities134

For the casem< 1, it can be shown that135

[[ f ′′]]L = [[ f ′′]]R =



























∞, m ∈ (0, 1
2)

1
2κ

2, m= 1
2

0, m ∈ ( 1
2 , 1)

(µB = 0), (30)

where [[F]]L,R, the amplitudes of the jumps suffered by a functionF across the planesξ = ξL,R, are defined here as136

[[F]]L := lim
ξ→ξ−L

F − lim
ξ→ξ+L

F and [[F]]R := lim
ξ→ξ−R

F − lim
ξ→ξ+R

F, (31)

and we have used the fact that

f ′′ = −κ2(1−m)2

{

d
d f

[

2F1(1−m,m; 2−m; f )
f m−1

]}−3 d2

d f 2

[

2F1(1−m,m; 2−m; f )
f m−1

]

= mκ
2(1− 2 f )( f − f 2)2m−1. (32)

Evidently, if 0 < m ≤ 1
2, then f ∈ C1(R) but f < C2(R), with the casem = 1/2 (i.e., n = 2) admittingmild dis-137

continuitiesof the lowest possible order, namely, two; see Ref. [17]. In contrast, f ∈ C2(R) for every 1
2 < m < 1;138

however, it can be shown that higher-order mild discontinuities do occur for certain values ofm in this (upper) range: If139

m= 1− 1/N, whereN ≥ 3 is an integer, then
∣

∣

∣[[ f (N)]]L,R

∣

∣

∣ ∝ κ
N.140

141

Remark 7. For m ∈ (0, 1
2), the compact kinks described in this section are, qualitatively, very similar to those142

uncovered by Destrade et al. [18], who considered transverse traveling waves in a class of nonlinear viscoelastic143

media.144

Remark 8. It is noteworthy that acoustic mild discontinuities of order two have also been predicted in inviscid145

dipolar fluids; again, see Ref. [3,§3], wherein such discontinuities are termed “dipolar stress waves”.146

4. Traveling waves: Liquids and non-monatomic gases147

4.1. Ansatz, associated ODEs, and representative special cases148

Seeking TWSs as we did in sect. 3.1, but now under the assumption µB > 0, it is readily established that the149

associated ODE in this case is150

α(− f ′)n − f ′ = κ
•( f − f 2), (33)

where we have set151

α :=
4
3

(

σµ

µB

)

and κ
• := Re

(

ǫβµ

µB

)

. (34)

Here, once again, we have assumed the ansatzφ(x, t) = F(ξ), with f = F′; the wave speed is given by (18); and we152

have imposed and enforced the asymptotic conditionsf → 1, 0 asξ → ∓∞.153

If n = 1, 1
2 , 2, 3, 4, then one can solve forf ′ in terms of f ; indeed, with little difficulty it can be shown that154

f ′ = − 1
2



























2κ•(1+ α)−1( f − f 2), n = 1,

α2 + 2κ• f (1− f ) − α
√

α2 + 4κ• f (1− f ), n = 1
2 ,

−α−1
[

1−
√

1+ 4ακ• f (1− f )
]

, n = 2,

(35)

while obtaining such expressions for the casesn = 3, 4 requires use of the more complicated formulas of Cardano and155

Ferrari, respectively. Additionally, phase-plane analyses reveal that all three ODEs in (35) admit kink-type TWSs,156

provided of course thatf (0) ∈ (0, 1), where we recall that then = 1 case corresponds to Burgers’ equation.157
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For the general casen > 0, the following series solution of (33) can be readily obtained by the method of successive158

approximations:159

f (ξ) = 1
2 + F

−1(− 1
4)ξ +















[2F −1(− 1
4) − 1]F −1(− 1

4)

6F ′[F −1(− 1
4)]















ξ3 + · · · , (36)

where we have again takenf (0) = 1/2 and160

F (f) := − 1
κ•

[

(−f) + α(−f)n] (f < 0). (37)

4.2. Numerical results161

On the other hand, using theNDSolve[ ] command, which is also offered as part of the software package Math-162

ematica (ver. 5.2), it is not difficult, for the three cases given in (35) at least, to numerically integrate (33), which we163

now do subject to the “initial condition”f (0) = 0.5. In Fig. 1 are shown the resulting solution profiles, all of which, as164

expected, are kinks. From these curves it is clear that| f ′(0)| and the rate at whichf approaches its asymptotic values165

are both increasing functions ofn. The behavior of| f ′(0)|, however, indicates that the shock thicknesses,ln(> 0),166

corresponding to these three curves (i.e.,n = 1, 1
2 , 2) are all decreasing functions ofn. Here, for f (0) = 1/2, the shock167

thicknesses admitted by the kink TWSs of the ODEs in (35) are168

ln =



























4(1+ α)/κ•, n = 1,

4
∣

∣

∣ 2α2 + κ• − 2α
√
α2 + κ•

∣

∣

∣

−1
, n = 1

2 ,

2α
∣

∣

∣ 1−
√

1+ ακ•
∣

∣

∣

−1
, n = 2,

(38)

where in the present contextln := | f ′(0)|−1 for all n > 0.169

-7.5 -5 -2.5 2.5 5 7.5
x

0.2

0.4

0.6

0.8

1

f

Figure 1: f vs.ξ based on (33) forα = 0.5 andκ• = 2.2. Bold-solid:n = 2. Thin-solid:n = 1 (Burgers’ equation). Thin-broken:n = 1/2.
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4.3. The special caseµB > 0, n = 2170

In this subsection we present a number of analytical results, including the exact solution, for this important special171

case; one which will figure prominently in sect. 6 below. Our purpose here is to illustrate, to a limited extent at least,172

the behavior of the resulting kink profile, as well as examinethe case of vanishingµB.173

Now, on integrating then = 2 case of (35) and then enforcing the wavefront conditionf (0) = 1/2, the following
exact, but implicit, expression for the velocity field is obtained:

− ξ = 1
κ•

{√
ακ• sin−1















2
√
ακ• ( f − 1

2)
√

1+ ακ•















+ tanh−1[2( f − 1
2)]

+ tanh−1

[

2( f − 1
2)

√

1+ ακ• − 4ακ•( f − 1
2)2

]}

, f ∈ (0, 1). (39)

While exact, the solution we have just determined is also quite complicated, and as such provides little in the way of174

physical insight. Fortunately, however, approximate/asymptotic expression forf , which are both simpler than their175

exact counterpart and explicit, can be derived directly from (39).176

To begin with, we expand the RHS of (39) aboutf = 1/2. This yields, after simplifying, the power series177

−ξ = 2
κ•

{

(

1+
√

1+ ακ•
)

( f − 1
2) +

2
3













2+ ακ• + 2
√

1+ ακ•
√

1+ ακ•













( f − 1
2)3 + O[( f − 1

2)4]

}

, | f − 1
2 | < 1, (40)

from which an explicit small-|ξ| approximation forf can be obtained by neglecting terms ofO[( f − 1/2)4] and then178

using Cardano’s formula to solve the resulting cubic.179

In contrast, expanding the RHS of (39) aboutf = 0 and then neglecting terms ofO( f 2), it is not difficult to derive180

the following explicit large-ξ approximation:181

f (ξ) ≈ (1+ ακ•)−1W0















√
1+ ακ• exp















√
ακ• sin−1















√

ακ•

1+ ακ•





























exp(−κ•ξ)














(ξ ≫ 1/κ•), (41)

from which it is a simple matter to establish that under the present special case,182

f (ξ) ∼ (1+ ακ•)−1/2 exp















√
ακ• sin−1















√

ακ•

1+ ακ•





























exp(−κ•ξ) (ξ → ∞). (42)

Here, W0(·) denotes the principal branch of the LambertW-function; see, e.g., Ref. [19, Appendix B] and those183

therein. In the interest of brevity, we leave the task of determining the corresponding expressions for theξ = −∞184

asymptotic limit of f to the reader.185

In concluding this subsection we observe that (39) admits the small-µB approximation186

f (ζ) ≈



























1, ζ ≤ −ζc
sin2

[

1
2

(√
bζ − 1

2π
)]

, −ζc < ζ < ζc
0, ζ ≥ ζc

(b≫ 1), (43)

where, for convenience, we have setζ := ξ/(2α), b := 4ακ•, andζc = 1
2πb

−1/2. As expected, we find that (39)187

assumes the character of (29) whenµB is “near” zero.188

5. Unidirectional approximation: A generalized Burgers’ equation for propagation in power-law fluids189

First, we divide (15) by [1− 2ǫ(β − 1)φt], which can never be zero, expand each occurrence of the reciprocal of190

this quantity in a binomial series (sinceǫ ≪ 1), and then neglect termsO(ǫ2) andO(ǫ/Re). Thus, after rearranging191

terms and simplifying, our equation of motion becomes192

φtt − φxx+ ǫ∂t[(φx)2 + (β − 1)(φt)2] = (Re)−1∂t[(µB/µ +
4
3σ|φxx|n−1)φxx], (44)
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which for n = 1 becomes the special case of Kuznetsov’s equation [11, 12] corresponding to a non-thermally con-193

ducting Newtonian fluid.194

Since we have confined our attention to right-running waves,we can, based on theO(1) approximationφx ≃ −φt,195

replace5 the wave operator and the nonlinear (i.e., “small”) term (φt)2 on the LHS of (44) with 2∂t(∂t + ∂x) and (φx)2,196

respectively. This then leads us to consider197

2∂t(∂t + ∂x)φ + ǫβ∂t(φx)2 = (Re)−1∂t[(µB/µ +
4
3σ|φxx|n−1)φxx], (45)

which after integrating with respect tot and then differentiating with respect tox becomes198

2(∂t + ∂x)u+ 2ǫβuux = (Re)−1∂x[(µB/µ +
4
3σ|ux|n−1)ux], (46)

where we have used the fact thatu = φx. Introducing the change of variablesx = x− t andt = t, and then dividing by199

two, (46), reduces to200

ut + ǫβuux =
1
2(Re)−1∂x[(µB/µ +

4
3σ|ux|n−1)ux]. (47)

Here, we observe that forn = 1, (47) reduces to the classic Burgers’ equation [7, 20], while for µB = 0 it is identical201

in form to Ref. [21, Eq. (1)].202

203

Remark 9. The µB ≥ 0 cases of (47) admit, withu(x, t) = f (ξ), the same TWSs as the corresponding cases204

of (15); however, under (47) the wave speed is given byλ = ǫβ/2; again, see Ref. [21].205

206

Remark 10. It should be noted that (44) can readily be recast to exhibit anonlinearity of the “RSGC type”. As207

such, the resulting PDE would, on settingn = 1, reduce to the RSGC special case of Ref. [12, Eq. (19)] corresponding208

to a non-thermally conducting Newtonian fluid; see also Ref.[22] and those therein.209

6. Discussion210

While the forgoing analysis has reveled a number of new findings regarding weakly-nonlinear acoustic waves in211

this class of power-law fluids, it is the connection between the special casen = 2, which we observe does not appear to212

correspond to a particular fluid, polymer solution, etc., and thefinite-scaleversion of the compressible Navier–Stokes213

equations (or FSNS for short) that is, in our view, the most interesting of all.214

Referring the reader to Ref. [5, 6] for the details of FSNS theory, the connection we have found is the following:215

TheµB = 0 andµB > 0 sub-cases of then = 2 case of (15) yield TWSs that areidentical in form to those admitted216

by the inviscid and viscous versions, respectively, of the FSNS formulation examined in Ref. [6]; in particular, the217

quantities u, y,ǫ−1, and (γ + 1) that appear in Ref. [6, Eq. (24)] correspond6, respectively, tof , ξ/
√
α,
√

4α, andκ•218

in (35)3.219

Evidently, the averaging process used to obtain the FSNS from the special case of the compressible (1D) Navier–220

Stokes’ equations corresponding toµ = η̺, where the constant of proportionalityη carries (SI) units of m2/sec, and221

the bulk viscosity neglected, gives rise to aneffectiveviscosity function that is identical in form to the caseµB > 0,222

n = 2 of the present study, but withη playing the role ofνB (seeRemark 3); i.e., as alluded to above, the inviscid223

limit of Ref. [6, Eq. (24)] corresponds to the caseµB = 0, n = 2 (see sect. 3). Also of interest is the fact thatL, the224

averaging length parameter in Ref. [6], corresponds to the quantity 4(kν/L)
√

2/3 (with n = 2) here.225

Given the above, it not surprising that the present study also has a close connection to the work carried out in226

Ref. [4], wherein the notion of “artificial viscosity” was first introduced in the context of gas dynamics. To see this,227

one need only compare theµB = 0, n = 2 special case of (3) with Ref. [4, Eq. (3) and (8)]; see alsoRemark 6.228

And lastly, it should be noted that, in addition to compact kinks, both semi-compact front-type, as well as compact229

pulse-type, TWSs have also been predicted in various types of continuous media; see, e.g., Refs. [19, 23], respectively,230

and those therein.231

5See, e.g., Crighton’s [20, p. 16] treatment of the thermoviscous version of (16).
6This means that the results presented in sect. 4.3 also applyto Ref. [6, Eq. (24)] and/or its solution.
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