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Abstract

This paper presents the results of finite element analysis of a heat transfer problem of flowing polymer melts in a tube

with constant ambient temperature. The rheological behavior of the melt is described by a temperature dependent power-

law model. A viscous dissipation term is included in the energy equation. Temperature profiles are obtained for different

tube lengths and different entrance temperatures. The results are compared with some similar results in the literature.
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1. Introduction

Heat transfer to incompressible viscous non-Newto-

nian fluids is a problem of considerable practical sig-

nificance since many fluids in food processing, polymer

processing, and biochemical industries undergo a heat

exchange process either during their preparation or in

their application.

The so-called Graetz–Nusselt problem which has

been studied for nearly 100 years for heat transfer

of Newtonian flows in tubes is to solve for tempera-

ture profiles in the fluid flows in circular tubes. The

following assumptions are frequently made in solv-

ing the Graetz–Nusselt problem as summarized in

[11]:

(1) temperature has reached a steady state;

(2) heat conduction in the tube direction is negligible in

comparison with heat transport in the tube direction

by the over all fluid motion;

(3) the equilibrium physical property q (density) and Cp

(heat capacity) are independent of position;

(4) the non-equilibrium property g (viscosity) is inde-
pendent of position, and k (thermal conductivity)
is independent of position;

(5) heat produced by viscous dissipation is negligible;

(6) there are no external (body) forces acting on the

fluid;

(7) the flow obeys Newton�s law of viscosity and Fou-
rier�s law of heat conduction.

Lyche and Bird [11] considered the problem for

power-law flows with no viscous dissipation. Their work

is concerned with the relaxation of the seventh as-

sumption and seems to be the first to find an analytic

solution of the Graetz–Nusselt problem for a non-

Newtonian flow. The power-law fluid has been proven

useful for the description of polymer melts, metal melts,

blood flow as well as many other industrial flows [6]. In

this paper, we study the Graetz–Nusselt problem with

the following assumptions:

(1) g is a function of position and temperature;
(2) heat conduction in the tube direction is not negligi-

ble;

(3) heat produced by viscous dissipation is not negligi-

ble and it satisfies an Arrhenius temperature depen-

dence law;*Corresponding author.
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(4) the flow obeys the Ostwald–deWaele law which is

also called the power-law and Fourier�s law of heat
conduction.

The corresponding model is a non-linear elliptic

boundary value problem. A general analytic solution of

the model for the temperature profile in the tube is not

available. Numerical methods are required to provide

solutions to the problem, although Wei and Zhang [17]

have shown an analytic temperature profile at large tube

length. Several papers for this power-law flow Graetz-

type problem can be found which use analytic or

numerical approaches. For example, Shih et al. [16]

investigated the entrance laminar heat transfer of power-

law polymer fluids in circular tubes with wall slip by

Leveque series which uses a linear velocity profile. Flores

et al. [4] surveyed the heat transfer to power-law flow in

tubes and flat ducts with viscous heat generation by

superposition procedures. Kumar and Bhattacharya [7]

studied the aseptic processing of incompressible non-

Newtonian liquid food flow with temperature-dependent

and shear viscosity. Due to the jump in the fluid inlet

temperature and the tube wall temperature, the solution

of the Graetz-type problems suffer a unbounded tem-

perature gradient at the edge of the entrance. Prusa and

Manglik [13] presented a singular perturbation based

finite difference method for the solution of the power-

law Graetz-type problem. Their method give high level

of accuracy as the singularity is approached.

Most of these earlier research work was concerned

with the temperature-independent viscosity power-law

model. Shih et al. and Flores et al. have considered the

viscous dissipation term Brrnþ1 after dimensionless re-
duction, where Br is called the Brinkman number, r is
radial position, and n is the shear rate exponent. Kumar
and Bhattacharya put temperature into consideration in

their viscous dissipation term and used g1 e
N DE=RgT rn�1,

where g1, DE, Rg and n are constant coefficients.

However, they only considered it in the equations of

motion and neglected it in the equation of energy. In the

present paper a temperature and position-dependent

viscous dissipation term Ae�nBðT�TmÞ du=drj jn�1 is con-
sidered, and heat conduction in the tube direction is

included. This model came from Agur and Vlachopou-

los�s paper [1]. In their paper a typical high-density
polyethylene melt was investigated, and numerical so-

lutions were obtained by using a finite difference

method. In all the above mentioned papers, heat con-

duction in the tube direction was neglected. The ambient

temperature was applied directly to the fluid as a Di-

richlet boundary condition, and the entrance tem-

perature was used as the initial condition for the

corresponding parabolic partial differential equation.

Whereas, we include the conduction term in the tube

Nomenclature

Ae the triangle cross section of Xe

jAej area of triangle Ae

A, B constant coefficients in Eq. (2.3)

b shear rate viscosity

Br Brinkman number

C, D constant coefficients in Eq. (2.8)

Cp specific heat capacity

F, Fe global and local load vectors

h convective heat transfer coefficient

J the Jocobian matrix

k fluid thermal conductivity

K, Ke global and local stiffness matrices

n constant index in the power-law model

fNg linear shape function vector

r, R dimensional, and non-dimensional radial

coordinates

fRg, fReg global and local residual vector in Eq.
(3.1)

r0 radius of the tube

S surface area

T dimensional temperature

Tbulk bulk temperature

Tm constant coefficient in Eq. (2.3)

T0 inlet fluid temperature

Tw tube wall temperature

T1 ambient temperature

u flow velocity in the tube

uav mean flow velocity in the tube

z, Z dimensional, and non-dimensional axial

coordinates

Greek symbols

fUg nodal temperature for a triangle finite ele-

ment

C arc length

Ce boundary of Ae

g apparent viscosity

m constant coefficient in Eq. (2.5)

q fluid density

s shear stress

X solution domain

Xe a general finite element subdomain num-

bered e

Superscripts and subscripts

T transpose of a matrix

e refers to a quantity or entity associated with

Xe
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direction and solve a corresponding elliptic equation by

using a Galerkin finite element method. We also allow

convection through the ambient and obtain the corre-

sponding solution with a Dirichlet boundary condition

on the wall by letting the film coefficient approach in-

finity as a limit. There are several related papers (see,

e.g., [2,3,9,10]) in which the following stress s and shear
rate du=dr relationship is adopted

s ¼ l

du
dr

1þ l
l0

du
dr

����
����
1�n

 !

in order to compensate the loss of accuracy of the

power-law

s ¼ l
du
dr

����
����
n�1
du
dr

for some fluids in which effective viscosity does not

vanish near the centerline of the tube. There are three

powerful numerical methods which can be employed to

solve this problem: finite differences, control volumes

and finite elements. Since the finite element method has

the ability to handle irregular geometrical boundaries

and complex boundary conditions and can be easily

modified to solve more general problems, it is our choice

of numerical method to solve this problem. In the sec-

ond section of the paper, we present the formulation of

the boundary value problem to be used as our model of

the tube problem. In the third section, we present the

finite element formulation and an algorithm for com-

puting the finite element solutions of the proposed

model. Although the procedures described in this section

are standard, we feel that it is necessary to explain some

of the specific details for this particular application.

In the last section, we present numerical solutions

obtained by running the finite element code which we

develop based on the finite element algorithm. Analyti-

cal solutions of a Graetz–Nusselt problem provided by

Flores et al. [4], which is a special case of our problem,

are used to compare with the numerical solutions. The

analytic solution at large tube length obtained by Wei

and Zhang [17] is also used to validate our numerical

solutions.

2. The mathematical model

We consider steady state heat transfer to hydrody-

namically developed laminar flow of a non-Newtonian

Poiseuille flow inside a circular tube subject to pre-

scribed ambient temperature. The tube wall is smooth

and no vibrations are present. The viscous dissipation in

the fluid is assumed to be a function of radial position

and fluid temperature. We also consider free convection

effects on the wall, and assume constant physical pro-

perties. Since the velocity profile is fully developed, the

corresponding energy and velocity problems are decou-

pled. The mathematical model for this heat transfer

problem is given by

qCpu
oT
oz

¼ k
o2T
or2

�
þ 1

r
oT
or

þ o2T
oz2

�
þ s

du
dr

ð2:1Þ

where T ¼ T ðr; zÞ is the unknown temperature of the
flow at location ðr; zÞ with 06 r6 r0, 06 z < 1, and u is
the velocity of the flow at the same location.

A common constitutive equation for polymer melts

with viscous dissipation is (Fig. 1)

s ¼ g
du
dr

ð2:2Þ

where

g ¼ Ae�nBðT�TmÞ du
dr

����
����
n�1

ð2:3Þ

By substituting (2.2) and (2.3) into the energy equation

(2.1), we obtain

qCpu
oT
oz

¼ k
o2T
or2

�
þ 1

r
oT
or

þ o2T
oz2

�
þ g

du
dr

� �2
ð2:4Þ

In the above, q, Cp, k, A, B, Tm, and n are positive
constants, and u is given by

u ¼ uav
m þ 2

m

� �
1

�
� r

r0

� �m�
ð2:5Þ

in which r0 is the radius of the tube, uav is the mean flow
velocity, and m ¼ ðnþ 1Þ=n. The constant n is called the
power-law index which satisfies 0 < n < 1. The flows
are frequently referred to as power-law flows. The con-

stants are being obtained experimentally. The fully de-

veloped velocity profile is assumed due to a small

Reynolds number given by qU 1�nLn=A in our example of
application. Here the origin of the xy-plane is at the
center of the cross-section of the tube at z ¼ 0, the z-axis
is in the tube flow direction and is placed through the

Fig. 1. Polymer flow in the tube.
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center of the tube. The boundary conditions for (2.4) are

given by

T ðr; 0Þ ¼ T0
T ðr0; zÞ ¼ Tw

oT ð0; zÞ
or

¼ 0
oT ðr; zÞ

oz
¼ 0 as z ! 1

8>>>>>>><
>>>>>>>:

ð2:6Þ

where Tw is the tube wall temperature and T0 the inlet
fluid temperature. To be more general, in our finite ele-

ment code, the Dirichlet boundary condition

T ðr0; zÞ ¼ Tw

is approximated by the following mixed convective

boundary condition

�k
oT ðr; zÞ

or
¼ hðT ðr; zÞ � T1Þ ð2:7Þ

where T1 is the ambient temperature in the exterior of

the tube, h is the film coefficient. The condition

T ðr0; zÞ ¼ Tw is satisfied approximately as h is chosen to
be very large and the value of T1 is used to replace Tw.
All T0, Tw, and T1 are constants in the work. Con-

ditions upstream are assumed to maintain a uniform

temperature T0 for the entering fluid. The last condition
in (2.6) will be replaced by

oT ðr; zÞ
oz

¼ 0

for a very large value z which is to be determined by the
numerical temperature profiles obtained.

Introducing the dimensionless parameters

Z ¼ mkz
ðm þ 2ÞqCpuavr20

; R ¼ r
r0

we have

oT
oz

¼ mk
ðm þ 2ÞqCpuavr20

oT
oZ

o2T
oz2

¼ mk
ðm þ 2ÞqCpuavr20

� �2
o2T
oZ2

oT
or

¼ 1

r0

oT
oR

o2T
or2

¼ 1

r20

o2T
oR2

du
dr

¼ �uav
m þ 2
r0

Rm�1

and

g ¼ AenBTm uav
m þ 2
r0

� �n�1
" #

Rðm�1Þðn�1Þ e�nBT

Since m ¼ ðnþ 1Þ=n, we get

g
du
dr

� �2
¼ AenBTmuav

m þ 2
r0

� �n�1
" #

Rðm�1Þðn�1Þ

� uav
m þ 2
r0

Rv�1
� �2

e�nBT

¼ AenBTmunþ1
av

m þ 2
r0

� �nþ1
" #

Rðm�1Þðnþ1Þ e�nBT

¼ AenBTmunþ1
av

m þ 2
r0

� �nþ1
" #

Rm e�nBT

From the above calculations and (2.4), we then have

the following non-linear elliptic partial differential equa-

tion

ð1� RmÞ oT
oZ

¼ D
o2T
oZ2

þ 1
R
oT
oR

þ o2T
oR2

þ C e�BnT Rm ð2:8Þ

where

D ¼ mk
ðm þ 2ÞqCpuavr0

� �2

C ¼ unþ1
av

k
AeBnTm

ðm þ 2Þnþ1

rn�10

and

g ¼ Ck

u2avðm þ 2Þ
2
Rðm�1Þðn�1Þ e�nBT

In the above, if the quantity D is very small and the

corresponding term Do2T=oZ2 in (2.8) being neglected,
then the equation is changed from an elliptic type to a

parabolic type which was considered in [1]. Eq. (2.8) and

the boundary conditions (2.6) and (2.7) form a well-

posed non-linear elliptic boundary value problem as

discussed in [17], where it is shown that the solution of

the elliptic problem converges to the solution of the

parabolic problem as D ! 0þ.

The example which we shall use for numerical solu-

tions is based on this formulation of the problem. The

data used in the example was given in [1].

3. The finite element model

We shall use a Galerkin finite element method for

numerical solutions of the problem defined by (2.7),

(2.8), and T ð0;RÞ ¼ T0. There are many introductory
books which provide details about this method (see, e.g.,

[14,15]). In the Galerkin finite element procedure, the

solution domain X is divided into subdomains Xe, which
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are called finite elements (see Fig. 2), and in each sub-

domain we seek the solution of the governing equation

through a piecewise approximation to the solution. The

differential equations must be recast into an approxi-

mate integral form which is the basis for the finite ele-

ment formulation. Due to symmetry, we shall use

axisymmetric finite elements. For simplicity, each sub-

domain is chosen to be a ring obtained by revolving

about the Z-axis 360� a triangle in the ðR; ZÞ plane. In
the following such a subdomain is denoted by Xe ¼
½0; 2pÞ � Ae, where Ae denotes the associated triangle and

the superscript e is used to count the number of sub-
domains involved. The three vertices of the triangle are

labeled by i, j, and k or 1, 2, and 3 respectively. We also
chose piecewise linear interpolation functions within

each element. Let fNg ¼ ½N1;N2;N3T denote the three
linear interpolation shape functions of ðR; ZÞ. We begin
the Galerkin procedure by constructing the weak inte-

gral form of (2.8), and have

fReg ¼
Z

Xe
fNg

�
� o2T

oR2
� 1

R
oT
oR

� D
o2T
oZ2

þ ð1� RmÞ oT
oZ

� C e�BnT Rm

�
dV ð3:1Þ

which can be written as

fReg ¼
Z

Xe
fNg

�
� 1

R
o

oR
R
oT
oR

� �
� D

o2T
oZ2

þ ð1� RmÞ oT
oZ

� C e�BnT Rm

�
dV ð3:2Þ

Since

fNg
R

o

oR
R
oT
oR

� �
¼ 1

R
o

oR
fNgR oT

oR

� �
� ofNg

oR
oT
oR

ð3:3Þ

and

fNg o
2T
oZ2

¼ o

oZ
fNg oT

oZ

� �
� ofNg

oZ
oT
oZ

ð3:4Þ

by substituting (3.3) and (3.4) into the weighted residual

equation (3.2), we have

fReg ¼
Z

Xe

ofNg
oR

oT
oR

�
þ D

ofNg
oZ

oT
oZ

�
dV

�
Z

Xe

1

R
o

oR
fNgR oT

oR

� ��

þ D
o

oZ
fNg oT

oZ

� ��
dV þ

Z
Xe
fNgð1� RmÞ

� oT
oZ
dV �

Z
Xe
fNgC e�BnT Rm dV ð3:5Þ

Let

fUg ¼ ½ Ti Tj Tk T ð3:6Þ

and

T ¼ fNgTfUg ð3:7Þ

then

oT
oR

¼ ofNgT

oR
fUg ð3:8Þ

oT
oZ

¼ ofNgT

oZ
fUg ð3:9Þ

Substituting (3.6)–(3.9) into Eq. (3.5), we have

fReg ¼
Z

Xe

ofNg
oR

ofNgT

oR

"

þ D
ofNg
oZ

ofNgT

oZ

#
dV fUg

�
Z

Xe

1

R
o

oR
fNgR oT

oR

� ��
þ D

o

oZ
fNg oT

oZ

� ��
dV

þ
Z

Xe
fNgð1� RmÞ ofNgT

oZ
dV fUg

�
Z

Xe
fNgC e�BnT Rm dV ð3:10Þ

The second volume integral in (3.10) can be reduced to a

surface integral by using the Divergence Theorem, and

we have

fReg ¼
Z

Xe

ofNg
oR

ofNgT

oR

"

þ D
ofNg
oZ

ofNgT

oZ

#
dV fUg �

Z
oXe

fNg oT
oR
cos h

�

þ D
oT
oZ
sin h

�
dS þ

Z
Xe
fNgð1� RmÞ ofNgT

oZ
dV fUg

�
Z

Xe
fNgC e�BnT Rm dV ð3:11Þ

where oXe ¼ ½0; 2pÞ � Ce is used to denote the boundary

of Xe. The derivative boundary condition is given by

normal flux

Fig. 2. The cross-section Ae of a axisymmetric linear triangular

element Xe.
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fIeg ¼ �
Z
oXe

fNg oT
oR
cos h

�
þ D

oT
oZ
sin h

�
dS

¼ �2p
Z

Ce
fNghðT1 � T ÞdC

¼ 2p
Z

Ce
fNghT dc � 2p

Z
Ce
fNghT1 dC

Substituting (3.7) into the above equation, we have

fIeg ¼ 2p
Z

Ce
½fNghfNgsfUg � fNghT1dC ð3:12Þ

Let

½Ke
k  ¼

Z
Xe

ofNg
oR

ofNgT

oR

"
þ D

ofNg
oZ

ofNgT

oZ

#
dV ð3:13Þ

½Ke
s  ¼ 2p

Z
Ce
fNghfNgs

dC ð3:14Þ

fFe
sg ¼ 2p

Z
Ce
fNghT1 dC ð3:15Þ

Then

fIeg ¼ ½Ke
s fUg � fFe

sg ð3:16Þ

The shape functions for the linear axisymmetric trian-

gular element are

Ni ¼
1

2jAej ðai þ biRþ ciZÞ ð3:17Þ

Nj ¼
1

2jAej ðaj þ bjRþ cjZÞ ð3:18Þ

Nk ¼
1

2jAej ðak þ bkRþ ckZÞ ð3:19Þ

where

ai ¼ RjZk � RkZj; aj ¼ RkZi � RiZk ; ak ¼ RiZj � RjZi

bi ¼ Zj � Zk ; bj ¼ Zk � Zi; bk ¼ Zi � Zj

ci ¼ Rj � Rk ; cj ¼ Rk � Ri; ck ¼ Ri � Rj

where ðRi; ZiÞ, ðRj; ZjÞ; and ðRk ; ZkÞ denote the coordi-
nates of the three vertices and jAej the area of the tri-
angle Ae. Let

L1 ¼ Ni; L2 ¼ Nj; L3 ¼ Nk

Then the area integral isZ
Ae

La
1L

b
2L

c
3 dA ¼ a!b!c!

ða þ b þ c þ 2Þ! 2jA
ej ð3:20Þ

where a, b, c are non-negative integers. By using the area
integral equation and substituting (3.17)–(3.19) into

(3.13), the evaluation of the stiffness element matrices

(3.13) is

Ke
k

� �
¼ 2pRavk
4jAej

b2i bibj bibk

bibj b2j bjbk

bibk bjbk b2k

2
64

3
75

8><
>:

þ
c2i cicj cick
cicj c2j cjck

cick cjck c2k

2
64

3
75
9>=
>; ð3:21Þ

where

Rav ¼
Ri þ Rj þ Rk

3

Substituting (3.17)–(3.19) into (3.14), we have

½Ke
s  ¼ 2p

Z
Ce
fNghfNgs

dC

¼ 2phLij

12

3Ri þ Rj Ri þ Rj 0

Ri þ Rj Ri þ 3Rj 0
0 0 0

2
4

3
5

or

2phLjk

12

3Ri þ Rk 0 Ri þ Rk

0 0 0
Ri þ Rk 0 Ri þ 3Rk

2
4

3
5

or

2phLik

12

0 0 0

0 3Rj þ Rk Rj þ Rk

0 Rj þ Rk Rj þ 3Rk

2
4

3
5

Similarly, we have

fFe
sg ¼ 2phT1Lij

6

2Ri þ Rj

Ri þ 2Rj

0

8<
:

9=
;

or

2phT1Ljk

6

0

2Rj þ Rk

Rj þ 2Rk

8<
:

9=
;

or

2phT1Lik

6

2Ri þ Rk

0

Ri þ 2Rk

8<
:

9=
;

where Li;j denotes the length of the side of triangle Ae

connecting vertex i and vertex j. Let

½Ke
u ¼

Z
Xe
fNgð1� RmÞ ofNgT

oZ
dV ð3:22Þ

and

fQeg ¼
Z

Xe
fNgC e�BnT e

Rm dV ð3:23Þ
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½Ke
u, fQeg and rfQeg are evaluated by the Gauss–

Legendre integration method in the triangular region.

Since the lowest order of L1, L2 and L3 in the inte-
grand of ½Ke

u, fQeg and rfQeg is 2þ m þ 1 ¼ 4þ
1=n, we choose a 4th order Gauss integration scheme
which uses seven Gauss points for evaluations of these

terms. We will use the following Gauss–Legendre inte-

gration formula for evaluations of the finite element

matrices:

Z
Ae

f ðR; ZÞdRdZ ¼
Z 1

0

Z 1�L2

0

gðL1; L2; L3ÞjJ jdL1 dL2

¼ 1
2

X7
l¼1

wlgljJ j

where

jJ j ¼

oR
oL1

oZ
oL1

oR
oL2

oZ
oL2

�������
������� ¼

R1 � R3 Z2 � Z3
R2 � R3 Z2 � Z3

����
����

is the Jacobian and the subscript l is used to denote
evaluation of a function at the lth Gauss point. See,
e.g., [14] or [15] for values of the Gaussian weights wl

and Gaussian points. Let R ¼ L1R1 þ L2R2 þ L3R3, Z ¼
L1Z1 þ L2Z2 þ L3Z3, and T ¼ T1N1 þ T2N2 þ T3N3. We
have

½Ke
u ¼

Z
Xe
fNgð1� RmÞ ofNgT

oZ
dV

¼ 2p
Z
Ae
fNgð1� RmÞ ofNgT

oZ
RdRdZ

¼ 2p
Z
Ae

N1

N2

N3

8><
>:

9>=
>;

oN1
oZ

oN2
oZ

oN3
oZ

� �

� ð1� RmÞRdRdZ

¼ 2p
Z
Ae

N1
oN1
oZ

N1
oN2
oZ

N1
oN3
oZ

N2
oN1
oZ

N2
oN2
oZ

N2
oN3
oZ

N3
oN1
oZ

N3
oN2
oZ

N3
oN3
oZ

2
66666664

3
77777775

� ð1� RmÞRdRdZ

¼ p
X7
l¼1

wl

L1
oL1
oZ

L1
oL2
oZ

L1
oL3
oZ

L2
oL1
oZ

L2
oL2
oZ

L2
oL3
oZ

L3
oL1
oZ

L3
oL2
oZ

L3
oL3
oZ

2
66666664

3
77777775

l

f1� Rm
lgRljJ j

and

fQeg ¼ C
Z

Xe
fNge�BnT Rm dV

¼ 2pC
Z
Ae
fNge�BnT Rmþ1 dRdZ

¼ 2pC
Z 1

0

Z 1�L2

0

L1
L2
L3

8<
:

9=
;e�BnT Rmþ1jJ jdL1 dL2

¼ pCjJ j
X7
l¼1

wl

L1
L2
L3

8<
:

9=
;

l

e�BnTlRmþ1
l

The gradient of Qe with respect to fUg is given by

rfQeg ¼

oQe
1

oT1

oQe
1

oT2

oQe
1

oT3
oQe

2

oT1

oQe
2

oT2

oQe
2

oT3
oQe

3

oT1

oQe
3

oT2

oQe
3

oT3

2
66666664

3
77777775

which is needed in order to implement Newton�s itera-
tions. Evaluation of the entry oQe

i =oTj in the above

matrix rfQeg is given by

oQe
i

oTj
¼ o

oTj
2pC

Z
Ae

Ni e
�BnT Rmþ1 dRdZ

� �

¼ �2pCBn
Z
Ae

NiNj e
�BnT Rmþ1 dRdZ

¼ �2pCBn
Z 1

0

Z 1�L2

0

LiLj e
�BnT Rmþ1jJ jdL1 dL2

¼ �pCBnjJ j
X7
l¼1

wlðLiÞlðLjÞl e�BnTlRmþ1
l

Similarly, we have the evaluation of the matrix rfQeg,

rfQeg ¼ �pCBnjJ j
X7
l¼1

wl e
�BnTlRmþ1

l

L21 L1L2 L1L3
L2L1 L22 L2L3
L3L1 L3L2 L23

2
64

3
75

l

In the above Gauss integration formulas, Tl ¼ T1ðL1Þl þ
T2ðL2Þl þ T3ðL3Þl, and Rl ¼ ðL1ÞlR1þ ðL2ÞlR2 þ ðL3ÞlR3,
16 l6 7.
The solution domain X is divided into over 2000

triangular elements Xe for numerical simulation. Fig. 3

shows only 100 of these elements. Since this energy

equation is non-linear, Newton�s iteration method,

which will give quadratic convergence to the solution, is

used to solve the equation. The standard Gauss–Jordon

elimination and the backward substitution method is

used to solve the linear algebraic equation at each iter-

ation. The solution of the linear energy equation is used

as the initial solution to start Newton�s iterations.

D. Wei, H. Luo / International Journal of Heat and Mass Transfer 46 (2003) 3097–3108 3103



The linear energy equation without dissipation is

given as the following

ð1� RtÞ oT
oZ

¼ D
o2T
oZ2

þ 1
R
oT
oR

þ o2T
oR2

ð3:24Þ

It�s global finite element matrix equation can be

written as

½KfUg ¼ fFg ð3:25Þ

where

½K ¼ ½Kk  þ ½Ku þ ½Ks
fFg ¼ fFsg

After the solution of the above linear energy equation is

found, it will be used as an initial solution to solve the

following non-linear energy equation with a dissipation

term

ð1� RtÞ oT
oZ

¼ D
o2T
oZ2

þ 1
R
oT
oR

þ o2T
oR2

þ C e�BnT Rm ð3:26Þ

It�s global matrix equation can be written as

½KfUg ¼ fFg þ fQg ð3:27Þ

Newton�s iteration method for a non-linear system

fUnþ1g ¼ fUng � JðUnÞ�1fRðUnÞg ð3:28Þ

can be written in the following form to avoid evaluating

the inverse of the Jacobian matrix

JðUnÞfUnþ1g ¼ JðUnÞfUng � fRðUnÞg ð3:29Þ

where the Jacobian matrix JðUnÞ is
JðUnÞ ¼ rRðUnÞ ¼ ½KfUng � rfQg

The corresponding computational scheme is

Input: number N of equations and unknowns; ini-

tial solution U0; tolerance TOL; maximum number

of iteration M .
Output: approximate solution U or a message that

the maximum number of iteration was exceeded.

Step 1. Set k ¼ 1
Step 2. While ðk6MÞ do steps 3–6
Step 3. Calculate RðUÞ and JðUÞ
Step 4. Solve the N � N linear system JðUÞH ¼
JðUÞU � F ðUÞ for H
Step 5. If kH � Uk < TOL, then output H; (proce-
dure completed successfully)

Stop

Step 6. Set k ¼ k þ 1, U ¼ H
Step 7. Output (Maximum number of iterations ex-

ceeded); (procedure completed unsuccessfully)

Stop.

For a detail description of Newton�s iterations see,
e.g., [12].

4. Results and discussion

The following power-law temperature-dependent

viscosity model with fluid properties representing a

typical high-density polyethylene melt were used as our

example of numerical simulation

g ¼ Ae�nBðT�TmÞ du
dr

����
����
n�1

where A ¼ 28; 200 Pa sn, B ¼ 0:0240 K�1 and Tm ¼ 399:5
K. This is the example given by Agur and Vlachopoulos

in [1]. The following velocity and temperature boundary

conditions have been used

u ¼ uav
m þ 2

m

� �
1

�
� r

r0

� �m�
T ðr; 0Þ ¼ T0

� k
oT
or

ðr0; zÞ ¼ hðT ðr0; zÞ � T1Þ
oT
oz

ðr; LÞ ¼ 0

where uav ¼ 15:0 cm/s m ¼ ðnþ 1Þ=n, n ¼ 0:453, r0 ¼
0:125 cm T0 ¼ 130 �C, T1 ¼ 160 �C, and a large value of
740 cm is used for L. The finite element code is written
for convective boundary condition. It covers the Di-

richlet boundary condition which places the ambient

temperature directly to the fluid on the tube wall in the

limiting case when h is given a very large artificial value
as large as 106 W/m2 K in our computation. This can be

justified since
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Fig. 3. The finite element mesh.
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T ðr0; zÞ � T1 ¼ � k
h
oT
or

ðr0; zÞ ¼ �10�6k oT
or

ðr0; zÞ

can be very small and therefore T ðr0; zÞ is close to T1. In
this example, the value of D is 1.7667· 10�7, which is
very small. Therefore the term Do2T=oZ2 is considered
to be small and negligible by the authors of [1]. How-

ever, as one can see from the boundary conditions or the

numerical solution presented in Fig. 6 that the quantity

o2T=oZ2 can be very large at the entrance of the tube.
Solutions of the energy equation for Poiseuille flow

through the tube with the above given data are pre-

sented in Figs. 4–6. The bulk temperature profiles in

Figs. 4–6 are shown as functions of the dimensionless

axial distance Z. The bulk temperature is defined as

TbulkðZÞ ¼
R 1
0
T ðR; ZÞuðR; ZÞRdRR 1
0
uðR; ZÞRdR

In Fig. 4, the temperature profiles for the power-law

temperature-dependent viscosity model and for the

model without viscosity are compared. The two models

are identical except for the viscosity dissipation term

which is zero in the second model. It can be seen that the

temperature of the fluid obtained with the temperature-

dependent model is much higher than the case without

viscosity. And at the intermediate values of R, the tem-
perature profiles bulge near the wall, indicating that

more heat is generated by viscous dissipation here than

is generated near the center of the tube. This is due to

the fact that the shear rates are the highest near the tube

walls. In Fig. 5, the bulk temperatures are shown for

power-law temperature-dependent viscosity fluids with

different inlet temperatures. In each case of temperature-

dependent models, the bulk temperature approaches the

same outlet temperature, 462 �C. This is to be expected
since the fully developed velocity and temperature pro-

files are determined by the wall boundary condition, the

viscosity and thermal conductivity of the fluid, not by

the inlet temperature of the fluid. It was pointed out by

Faghri and Sparrow [5] that wall axial conduction can

readily overwhelm fluid axial condition in a case for

Newtonian flows. Also shown in Fig. 5 is the effect

of removing the viscous dissipation term from the en-

ergy equation. Without viscous dissipation, the limiting

bulk temperature is equal to the wall temperature of
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Fig. 4. Development of bulk temperature profiles along tube

radial axis for the power-law flow at various tube lengths:

Z ¼ 0:05 (solid line), Z ¼ 0:1 (dashed line), Z ¼ 0:5 (dash dotted
line), Z ¼ 1 (dotted line), Z ¼ 1:5 (long dashed line), Z ¼ 2:0
(dash dot-dot line), and Z ¼ 2:5 (solid line).

0 0.1 0.2 0.3 0.4 0.5
Z

100

150

200

250

300

350

400

450

NO VISOUS DISSIPATION

T
E
M
P
E
R
A
T
U
R
E

C
o

Fig. 5. Bulk temperature profiles as functions of dimensionless
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(dashed line), T0 ¼ 190 �C (dotted line), T0 ¼ 220 �C (long da-
shed line), T0 ¼ 250 �C (dash dotted line), T0 ¼ 160 �C (solid
line) with no viscosity dissipation.
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Fig. 6. Three dimensional temperature profile of the power-law

flow in the tube.
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160 �C. The difference of 302 �C is an indication of the
importance of viscous dissipation in the Poiseuille flow

of polymer melts through a tube. The temperature

profile becomes fully developed after Z ¼ 0:2, which is
about 60 cm in the actual tube length. In Fig. 6, devel-

opment of temperature profiles along two dimensions

ðR; ZÞ is presented.
Most of the previous contributions on forced heat

transfer of power-law flows through a tube were for

Newtonian fluid without considering viscous dissipa-

tion. Among them, Khellaf and Langiat [8] solved the

Graetz problem in the entrance region of ducts. Wei and

Zhang [17] found the steady state solution far away from

the entrance for the same problem by using the Chambre

method. Their solution can be expressed as

T ¼ T1 � 2C1ðm þ 2Þ
nBðC1 þ 1Þh

þ 2

nB
ln

C1Rmþ2 þ 1
C1 þ 1

for the problem with mixed boundary condition, where

C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CnBþ ðm þ 2Þ2 enBl

CnB

" #2
� 1

vuut � CnBþ ðm þ 2Þ2 enBl
CnB

C ¼ unþ1
av

k
AenBTm

ðm þ 2Þnþ1

rn�10

and

l ¼ T1 � 2C1ðm þ 2Þ2

nBðC1 þ 1Þh

By letting h ! 1 in the limiting case, the above solution

becomes the solution of the corresponding problem with

Dirichlet boundary condition, which is

T ¼ Tw þ
2

nB
ln

C1Rmþ2 þ 1
C1 þ 1

where

C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CnBþ ðm þ 2Þ2 enBTw

CnB

" #2
� 1

vuut

� CnBþ ðm þ 2Þ2 enBTw
CnB

This is equivalent to applying the ambient tempera-

ture T1 directly to the fluid on the wall and letting

Tw ¼ T1. Fig. 7 presents a comparison at tube length
approximately equals 60 cm between our finite element

numerical solution and the corresponding analytic so-

lution of Wei and Zhang with Dirichlet wall boundary

condition. It can be seen that the agreement is good with

a maximum deviation of 5.6%. This error is to be ex-

pected since the choice of the value of h, the finite ele-
ment mesh and the round-off error in solving an N � N
non-linear system with N ¼ 2000 etc. are all contribut-

ing to this error. Since the standard Gauss–Jordon

elimination and the backward substitution method are

used to solve the linearized equation at each Newton�s
iteration, the round-off error in this linear algebraic

solver does not seem to be the main reason for the dis-

crepancies. Another analytical approach to the non-

Newtonian fluids with viscous dissipation in circular

tubes was presented by Flores et al. [4]. In their paper,

they described a power-law fluid of constant thermo-

physical properties flowing in a laminar regime through

a tube or a flat plate. Although their temperature-inde-

pendent viscous dissipation term is different from our

temperature-dependent viscous dissipation term, the al-

gorithm needed to solve both problems is basically the

same, except that we need to set the coefficient of the

temperature-dependent part in our viscous dissipation

term to zero. Therefore, by a small modification we

solve their problem to test the reliability of our program.

Their dimensionless energy balance equation is given as

ð1� Rnþ1Þ oT
oZ

¼ 1

RM

o

oR
RM oT

oR

� �
þ BrRnþ1 ð4:1Þ

where the dimensionless transformation is given as

T ¼ T � T0
Tw � T0

; R ¼ r
r0

Z ¼ n�ðM þ 1Þ x
R

" # k
qCpuavR

n� ¼ ðM þ 1Þ�1 � ðM þ nþ 2Þ�1

Br ¼
b

kðTw � T0Þ
½uavðM þ nþ 2Þ

nþ1
n =Rð1�nÞ=n
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Fig. 7. Numerical solutions vs analytical solution at a large

tube length of 60 cm.
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In the above, T is the dimensional temperature, r0 is the
radius of the tube or half thickness of a flat duct, r is the
radial coordinate z is the axial flow coordinate, Tw and T0
are the constant wall temperature and inlet temperature,

respectively. The constant b is the shear rate viscosity, n
the viscosity shear rate exponent (n ¼ 1, Newtonian;
n > 1, pseudoplastic behavior, and n < 1, dilatant be-
havior) and M is to denote the geometry. M is 0 when

fluid is flowing on a plane, and M is 1 when fluid is

flowing through a cylindrical tube. The Brinkman

number, Br, can be either positive or negative according
to the value of ðTw � T0Þ. Thus, Br < 0 stands for cooled
flow, while Br > 0 when the flow is heated. Eq. (4.1) is
similar to (2.8). So by a small modification, this problem

can be solved by our program.

Fig. 8 presents a comparison of bulk temperature

values generated by our program with those of Flores

et al. The agreement is excellent, since the maximum

deviation in the whole range of Z values is only about
0.4%. Both solutions seem to converge to the same value

after Z P 1. In Fig. 9, the present numerical solution has

a maximum deviation of 3.4% from the analytical so-

lution of Flores et al. in the whole range of Z. In Fig. 10,
the present numerical result has a maximum deviation of

5.1% from the analytical solution of Flores et al. in the

whole range of Z. It can be concluded that the present
numerical solution approximates the analytical solutions

well for small values of D and for bulk temperatures.

This justifies the reliability of the present numerical

method and the finite element code. A grid refinement

near the entrance is needed in order to compare the

corresponding solutions for large values of D in more

detail. However we do not intend to do such compari-

sons in this work.

5. Conclusion

A Graetz–Nusselt type problem of incompressible

non-Newtonian fluids with temperature-dependent

power-law viscous dissipation was investigated by using

a Galerkin method with linear axisymmetric triangular
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finite elements. The resulting system of non-linear alge-

braic equations was solved iteratively by using Newton�s
method. The result was validated by comparing the

numerical steady state solution with the analytical

steady state solution and tested by comparing the

numerical solution with the analytical solution of a

Graetz–Nusselt problem in a special case. It was shown

that the temperature-dependent viscous dissipation term

has significant impact on the heat transfer. Comparing

with those models in which the conduction term in tube

length direction was neglected, this model seems to

represent the true solution better at the entrance region

of the tube while imposing a zero longitudinal heat flux

condition at large tube length. The bulk temperature

difference between the model with temperature-depen-

dent power-law viscous dissipation and the model

without viscous dissipation is 302 �C for the given data.
Further, the numerical results indicate that the temper-

ature profile becomes fully developed at a tube length

over z ¼ 60 cm in the example. The finite element code

developed can be used for similar problems with general

boundary conditions and data in tubes. Finally, the re-

sults in this work are not applicable to fluids in which

effective viscosity does not vanish near the centerline of

the tube.
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