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In this paper, we use Hermite cubic finite elements to approximate the solutions of a nonlinear Euler-
Bernoulli beam equation. The equation is derived from Hollomon’s generalized Hooke’s law for work
hardening materials with the assumptions of the Euler-Bernoulli beam theory. The Ritz-Galerkin finite
element procedure is used to form a finite dimensional nonlinear program problem, and a nonlinear
conjugate gradient scheme is implemented to find the minimizer of the Lagrangian. Convergence of the
finite element approximations is analyzed and some error estimates are presented. A Matlab finite
element code is developed to provide numerical solutions to the beam equation. Some analytic
solutions are derived to validate the numerical solutions. To our knowledge, the numerical solutions as
well as the analytic solutions are not available in the literature.
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1. Introduction

The following power-law is frequently used to model axial
stress-strain relations for annealed metals:

G:K|8|n_18

where ¢ is the stress, ¢ is the strain, and K and n are constant.
Materials modeled by the above power-law equation are called
work-hardening materials, sometimes referred to as Hollomon or
Ludwick materials. The values of K and n for some common
annealed metals can be found in undergraduate textbooks and in
engineering literature, e.g., see [1-3]. Modern applications of these
work-hardening metals can be found from bumper beams in the
automobile industry [4] to micro-grippers in bio-engineering [5].
These materials and the power-law equation are widely
introduced to undergraduate engineering students at the sopho-
more level. More sophisticated beam equations that model the
power-law materials exist but are less accessible to the students,
see, e.g., [6-8]. However, to our knowledge, there are very few
mathematical models in the literature which provide simple
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bench mark analytic or numerical solutions for modeling
mechanical structures made of these materials.

In this work, we study the following nonlinear beam equation
for the power-law materials:
n—1

d*v

dx?

d2
dx?

&
dx?

n

—f(x)=0, O<x<lL )

where v(x) is the transversal deflection of the beam, x is the axial
location, I,, (where n # 1) is the generalized moment of inertia.

For the case n=1, this equation reduces to the standard Euler-
Bernoulli equation for an elastic beam, which has been studied
extensively. For a good account of finite element solutions for this
case, see [9]. Further, Reddy [10] examined nonlinear versions of
elastic Euler-Bernoulli beams (which are more general than linear
case) and their finite element solutions.

Several authors have studied the following similar beam
equation:

dp\"'d*¢ _ .
nK(E> ?—P sin(p+0)=0, O0<s<L )
for the power-law materials, where s is the arc length, ¢ is the
bending angle at s, P is the end load applied with an angle o. The
paper by Kang and Li [7] provides a solution of Eq. (2) for a
punctual load at s=L (the end). Their solution coincides with our
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Nomenclature F the magnitude of the punctual load
fix) the vertical distributed load
X the local coordinates Iy the generalized moment of inertia
Vv the set of all the possible displacements which give I(w) Lagrangian energy functional
finite energy and subject to a set of appropriate  K.,v material constants
essential boundary conditions 1© the length of the eth subinterval
7©(x)  the characteristic (or indicator) function ne total number of subintervals on x
{c1,€2,¢3,¢4) the integration constants to be determined by the ™. the number of local shape functions
boundary conditions v the vector of global nodal values
1(x) the unit step function v(x) the vertical displacement of the beam at location x
P the ith local finite element shape function for the eth V(x) the global Hermite cubic interpolation function
element interval V@) local interpolation function
o the stress i the ith local nodal value
o(X) Dirac delta function X the global coordinates
g the strain Xp the location of the punctual load
A the cross sectional area of the beam GQ Gaussian quadrature
C the connectivity matrix NCG Nonlinear conjugate gradient
e the index of the element
solution when o =m/2. Large deflections of the beam are also where
studied by them. Teng and Wierzbicki [11] derived analytic
solutions and numerical solutions of Eq. (2) for a power-law K\D(U)\TH

beam subject to a punctual load at one end. The Timoshenko
beam element in Abacus was used by them to obtain numerical
solutions for comparison with the analytic solutions.

Further, the more recent work of [8] that gives an analytical
solution in couple stress elasto-plastic theory is presented for the
pure bending beam under small deformation.

There are many papers devoted to the study of the Euler-
Bernoulli beam for functionally graded materials with thickness
dependent material constants, for small and large deflections, see
Yahoobi and Feraidoon [12] and the references therein. Wang,
et al. [6] study large deformation of functionally graded cantilever
beams for the power-law material, both experimentally and
analytically.

In this work, we use the Ritz—Galerkin’s finite element method
to approximate the solutions of the power-law Euler-Bernoulli
beam equation. Hermite cubic finite elements and the nonlinear
conjugate gradient scheme (NCG) [13] are used in the Ritz-
Galerkin finite element method for solutions of the beam equa-
tion. A finite element code in Matlab is written to implement the
numerical scheme and to provide numerical solutions. Analytic
solutions including two special cases to the beam equation are
derived for validation of the numerical solutions. It is shown that
the numerical solutions compare favorably with the analytic
solutions. We also provide convergence analysis and error esti-
mates. To our knowledge, these numerical solutions as well as the
analytic solutions are not available in the literature.

2. The power-law Euler-Bernoulli beam equation

A general form of the Hollomon equation can be written
as [14]:

Ox 1-v v v 0 0 0 €x
oy v 1-v v 0 0 0 €y
[ _c A v  1-v 0 0 0 € 3)
Txy 0 0 0 1-2v 0 0 Txy
Tyz 0 0 0 0 1-2v 0 Vyz
Tox 0 0 0 0 0 1-2v] | V=

T aA+va-2v

€x yxy sz
Du)y= |Vw & Vyz
Yx Yy E

[D(u)| = \/6,%+e§+ +€2+292,+2y2, 4272,

with K and v are material constants. When n=1, K equals the
Young’s modulus of linear elasticity and v the corresponding
Poisson’s ratio. Note that some notations, e.g., C, may be used for
multiple meanings later. It should incur no ambiguity within the
context. The Lagrangian energy functional I(u) for a power-law
elastoplastic body occupying a three dimension body V can be
defined by the kinetic energy minus the elastoplastic potential
energy plus the work done by external forces. It can be written as:

Iu) = % /v o’ dv,n]? /v ot dV+ /V fu’ dv + / Jr )

where € = (x,6y,62 Yy Vo Yy and 6 =(0x,0y,02,Txy,Txz, Tyz), P 1S
the density, u = (i,0,w) the velocity, f = (f,.f,.f,) the body force,
and t=(txty,t;) the surface force. For the power-law Euler-
Bernoulli beam, it is assumed that the components of the
displacement satisfy

ue Y
=V

v =V(X,t)

w=0

f =(0,r(x,1),0)

t=(0,0,0)

Therefore

(L ou_ v

XTox — Tox?

€ _1 a_u+@ =0
¥T2\ey ox)

€y =€z=€,=6=0
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The Lagrangian for the beam is given by

1t 7 4
I(v):i/o Pol-+ +1/

where I, = [,|y| dy dz is the generalized moment of inertia of
the beam. The following forth-order beam equation can be
derived by the principle of virtual work:

Pv &
P05 <1<1n
where v(x) is the vertical displacement of the beam at the axial
location x; f(x) is the vertical load; A is the cross sectional area of
the beam; See [14] for details of the derivation of (6), which is
referred to as the power-law Euler-Bernoulli beam equation in

this paper, and we only consider analytic and numerical solutions
of the corresponding steady state, i.e., Eq. (1).

n+l

L
dx— /0 fx)v(x) dx (5)

6_2

n+1

i
dx?

62
)f(x) 0, O0<x<lL (6)

3. The Ritz variational principle

It is known that the Euler-Lagrange equation for a Lagrangian
functional of the general form:

b
I(v)= / G(x,v(x),V'(x),v"(x)) dx

is

d* oG\ d (8G\ oG
v2 71 dw \ A1y +- :O'
dx? \ov dx \ov ov
The corresponding natural boundary conditions and essential
boundary conditions are
d <ac>_ oG oG

dx\ov’) ov =05 o’ =0

a<x<b

forx=aorx=>b

and
v(a)=Av'(a)=B,v(b)=Cv'(b)=

respectively. The Euler-Lagrange equation requires four boundary
conditions in order to have a unique solution. For details, see [15].
In particular, for the steady state power-law Euler-Bernoulli
beam, we have

n+1 fU

Kln v
G,V (%), (X)) = —~ \

and the corresponding Euler-Lagrange equation:

62
) <KI n

with natural boundary conditions

2v|"
dx?

62
) —fx)=0, O0<x<lL 7

Kl|v"|" 'v" =0 or KI,|v"|" 'v" =0

at x=a or x=b. The Ritz variational principle states that v(x)
represents the displacement of the beam at equilibrium subject to
appropriate boundary conditions if and only if v(x) is the solution
of the following minimization problem:

minl(v) st.veV (8)

where V is the set of all the possible displacements which give
finite energy and are subjected to a set of appropriate essential
boundary conditions.

The exact solution v(x) of Eq. (7) can be approximated by the
standard finite element approximation:
VO(x) = Z PPV = TvO, X <x <x¥ )
i=1

where d)“” is the ith local finite element shape function defined in
the eth interval x{” <x<x¥; v/ is the ith local nodal value
associated with the exact solution at x(e’ denote
vO =P vy . v and ¢ =[¢ ¢ - ¢ eis the index
of the element; n; is the number of local shape functlons

A natural choice of the shape functions for our problem is the
Hermite cubic shape functions [9], which are defined as:

2 X 3 _ X 2
o0 =13(5) +2(n) o =x(1- )
7\ 2 -\ 3 —\2 _
(e) X X ©_ = X X
0=3(56) -2(5) 4‘%@&(@”

and the corresponding second derivatives which will be used
latter are also given below:
oY 6 (1 27)

x> __[l(‘”]z ©)

2 (e - 2 ,(e) =
d,23 __6 (1721), %=,£<3i,1)
dx [l(e>]z l(e) dx 1(9) 1(9)

where X =x—x{ is the local coordinates; I
length of the eth subinterval.

Let ne denote the total number of subintervals on x. In the
Ritz-Galerkin method, we look for the solution by minimizing the
following energy function:

ey 2 (3>—< 2)

e GG

—xO_x©
=X, —x; is the

(V)= i 19v®)

e=1

where

19)
[OV©) = /
n+1

and V(x)= Y, x©V®©(x) is global Hermite cubic interpolation
function, V®(x) is given in Eq. (9);

n+1
|V

"laxd

X(Ze)
dx— / ) FxV© dx
e

. 1 if xex?, X7
s )(x) = © o)
0 if x¢[x7”, x3”1

is the characteristic (or indicator) function.

Denote V=[v; U, --- Vaes2]" as the global nodal values, then
the connections between the global nodal values and local nodal
values are

e e
Vae-1= U(1 ), Ve = V(z)

(€)

Vye+1n =V, fore=1,... ne.

(e
Vet1 = 1/3),

So the eth row of the 2(ne+1) x 4 connectivity matrix C can be
defined by

[Ce1,Ce2,Ce3,Cea] =[26—1,2e,2e+1,2e+2], fore=1,2,...,ne

It can be shown that I(V) is convex function of v and has a unique
global minimum at which the gradient VI must equal 0, i.e.,
ol/ov =0. The gradient of the local element energy function I
relative to the local degrees of freedom v = [v\, v, v, v is

or® {61(6) a1 o1® aﬂﬂ’)}
© = | 5@ 5@ 5,@" 5@
ve o vy vy vy

x(e) a
T+l / ove®

dz V(e) n+1
dx?

X(E) (E)
2 oV’
)dx/x‘f' f(x)mdx (10)
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Since V© = ¢©@Tv® and d*v® /dx* = (d*$©7 /dx*)v®, we have

ave 40, 2 v\  d*¢®
ove Toove | gx? - x>
and
o |@ve™! leve ve o (d?ve
o | g2 |~z o o g
|d2v(€) n-1 d2ve® d2¢(€)
:(n+l)| dx? dx? dx? an

Substituting Eq. (11) into Eq. (10), it yields

© X0 2u@|" !/ 2y@©\ 24O N

= / s (d v )d LA / * f0p dx
P dx dx dx P
(12)

So the gradient of the global energy function is
a_[aa A }
ov o ovy ovy" T Ve 1)
where
a a1
ovj e; %i,z: v

The summation de:lzcwzj is performed over all elements

with local nodes that share the global node number j. In the
process of evaluating the integral in Eq. (12), numerical overflow
may arise for 0<n<1 and for small values of the term
|d?V© /dx?|, since the term |d*V©/dx*|""" may take on very large
values and lead to divergence. One simple remedy to this problem
is to evaluate the term in the following way:

PveN" dPve
2 -1 /2 —a | f—5=0
d*v® d’v® dx dx
e )7 |Pvet | dve
2| <0
dx dx

In order to evaluate the integrals in I© and VI®, numerical
integration, such as Gaussian quadrature (GQ), can be performed.
The GQ is a quadrature rule to yield an exact solution for
polynomials of degree 2ny—1 or less by a suitable choice of the
points x; and weights w;, where nq is the number of the points
chosen for the quadrature. A detailed table for the values of w;
and x; can be found in [16].

4. Convergence of the finite element approximations

Let ¢(x) = \x|r_2x, then the following inequalities:

[x=y|? < C(pX)—pW)x—y)(| x|+ |y " (13)

[p0—p(y)| < Clx—y|"" for1<r<2 (14)

hold for all x, y e R™, where m > 1, (x,y) denotes the inner product;
the constant C > 0 is independent of x and y. A simple proof of the
above inequalities is shown in [17,18]. The convergence and error
analysis of our problem is based on the Aubin-Nitsche trick and
the above inequalities. Let r=n+1, let Wﬁ'r(O,L) be the space
defined by the set of admissible functions v satisfying
Je(v'["+|v|"+ |v]") dx < oo; where v(0),u(L),v'(0), and v'(L) are
given, and let W%'T(O,L) be the set of admissible functions u with
zero boundary conditions, satisfying [5(|u”|"+|v'|"+ [u|") dx < oc,
the corresponding u(0),u(L),u’(0), and uv/(L) are zero. Then, the

problem of finding the minimizer v of the energy functional I(v)
for the solution of our beam equation can be written as the
following variational equivalent problem:

Problem (P,). Find v e W}'(0,L), such that for all ue W3"(0,L),
a(v,u)= <{f,u)

where  a(v,u) = fé KI,,\62v/dx2\"71(62v/6x2,62u/ax2) dx, and
{fu) = féfu dx.

If Syh(0L) denotes the set of global Hermite cubic finite
element interpolation functions as a conformal subspace of
W}'(0,L), then the minimizer Uy, of I(U) over the set S;}(0,L) is
the unique solution of the following problem:

Problem (P;). Find Uy, € Sp;(0,L), such that for all U e S3},(0,L):
a(Uh!U) = <va>

where aUy,U)= [&KI,|62U,/dx?|" (62U /ox2,62U /ox?) dx, and
U = féﬂ] dx. By the Aubin-Nitsche trick and the above
inequalities, we have the following error estimate:

Theorem. Let v be the exact solution of (Pg) and let Uy, be the finite
element solution of (Pp), let h = max, - ; - nAX; be the maximum finite
element mesh size, then

lv—Ull < Ch"/G=" (15)

where lv—Upll = (f3 |v"(x)—Uj;x)|" dx)'/", and Cis a generic constant
independent of h.

The proof is omitted here since it similar to the classical work
of Glowinski and Morrocco [18]. Similar optimal error estimates
can be obtained by the work of Barrett and Liu [19]. Since r=n+1,
the order of convergence is O(h"/®™). It equals O(h) when n=1
and O(h'/?) when n— 0. This partially explains that convergence is
slower, in our numerical examples, for values of n closer to zero.
For the optimization problem (Eq. (8)) in this work, many non-
linear optimization techniques [20], e.g., nonlinear conjugate
gradient (NCG), Newton-Raphson, interior-point or active-set
method, are applicable. We implemented NCG simply for its good
combination among the simplicity, the convergence rate and
computational efficiency. Further, only the gradient of the objec-
tive function is involved in NCG method, rendering it numerically
more robust than methods requiring Hessian matrix (e.g., New-
ton-Raphson method). Slight modifications are made to accom-
modate the constraints. Note, If let J(x)=1I1(V), in which x=
[V1,V2, ..., Vane+2]", even though V] is not a self-adjoint positive
definite matrix, it however has the “monotonicity” property,
ie., <VJx)-VJy).x—y> > Clix—yl? for all x,y, by using (14). This
inequality provides the sufficient condition for convergence of the
NCG iterations. See, e.g., [21] for proof of convergence.

5. Exact solutions for some special cases

We show that in some special cases, analytical solutions of the
power-law Euler-Bernoulli Eq. (1) can be derived for n # 1. Many
analytic solutions to the case n=1 are classical and we do not
elaborate on them. These analytic solutions provide us more
insight for the problem solutions and also they can be a perfor-
mance measure of the finite element solutions. In this section,
KI,, is assumed constant w.r.t x.
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5.1. Case 1, constant distributed load

If fix) is constant (w.r.t. x), then Eq. (7) has the following
equivalent form:

& ([d] v _ 5
dx? dx* |~ KIn'

By double integration of Eq. (16), it yields

d*v

X

Ty g
&2 2K,

d*v

F = X4+ C1X+Cy 17)
X

If the beam has a free-end at x=1L, i.e,,

&
dx’

d*v
2
dx” |,

=0 (18)
x=1L

=L

Then the unknown constant c¢; and ¢, in Eq. (17) can be
determined. Taking derivative of Eq. (17), we get

B A VN D A
dx \ |ax? dx? B dx ax’ TK T
X = X =
hence ¢; = —fL/KI,, and correspondingly c; = fI? /2KI,. Therefore,

Eq. (17) can be written in the form of complete squares:

—1 2
% - <21{1n> (x —2Lx+L2) (21{1 )(L x) (19)

Note, Eq. (19) implies dzv/dxzzo if f>0 (the vice versa,
d*v/dx* <0 if f <0, the derivations to the solutions are similar
for these two cases). So the analytical solution v(x) can be
derived:

2 1/n
dv _ (L) (L)

&
dx?

o \aki,
SO
<%)1/ﬂ
U(X)= n (Lix)Z/l’H»Z +C3X+Ca

G+DE+2)

where ¢3 and ¢4 can be determined by the other two boundary
conditions, e.g., if the beam is fixed at another end:

dv
v(0)=0, — =0
dx|, _,
then we have
1/n 1/n
. (21f<1n> [2/n+1 ) (ZIJ;IH) [2/n+2
3=——7 = =N
G+1) G+ E+2)

In general, if different (other than free-end in Eq. (18)) boundary
conditions are considered, the complete square form of Eq. (19)
can not be obtained, i.e., c%—chz/Kln #0, then the solution
becomes much more complicated. Smce the function A(t)=
|t|"'t has the inverse function 27'(t) = [t|"/"'t, so the analytical
form of dzv/dx can be derived from Eq. (16):

1/n-1
<LX +C1X+C2)

2K1

'7}( +C1X+Cy 5K

If dzv/dx >0, then by taking an integral of the above equation, it
yields

dv 2l/nn1<1n (c Cz,zfcz f )

&~ St rasn Ki, "KLY

1/n
cz—zfﬁ<%x2+c1x+cz)

1+ /G- dx

1 =€+ X
n’ 2,/c2 2,{,5"2
where function ,F; is the well-known Gauss hypergeometric
function, see the definition in [22,23]. The constants cq,c5,c3 and
the solution v(x) can be obtained by applying the boundary
conditions, and using numerical integration of dv/dx.

It is well-known that if n=1, the problem becomes linear and
much simpler since the term |dv/dx\'H is gone, then we have

1 1

x |2F4 1-‘1—* — 2

v f
W=m, O<x<lL

The analytical solution can be easily obtained, that is

v(x) = X4 01X +CoX? +C3X+Cy

24KI,

Where the integration constants {c,c3,c3,c4} can be determined
by the boundary conditions.

5.2. Case 2, punctual load

If the punctual load Fé(x—xF) is considered, then Eq. (7) has the
following form:

d? div _ Fo(x—xr)
dx* -

dx? KI,
where F and x are the magnitude and the location (0 < xf <L) of
the punctual load respectively. Hence

d2

, O<x<L
i

&
dx?

ity _ F1x=xp)

d KT O<x<L
X

(X—Xp)+C1X+C,

where 1(x—xg) is the unit step function, ¢; and c, are determined
by boundary conditions, e.g., If the free-end boundary conditions
are considered (Eq. (18)), by following the similar idea of case 1,
we have

o (|8 &
dx dx? a
X=

so ¢; = —F/KI, and correspondingly c,

-1

n-1
v

dx’
X =

dx?

v
dx?

F

:m-FC]:O, O<x<lL

= Fxg/KI,. Hence

d*v

d*v - d*v _ F1(x—xg) F Fxp
dx?

o2 Kp SRR,

= % (x—xp)[1(x—xp)—1], O<x<L (20)

Note, same as the case 1, Eq. (20) implies dzv/dx2 >0if F> 0 (vice
versa, for dzv/dx2 <0 if F<O0, the solutions are also similar).
Hence, at this case

2 1/n
(3};) = <£ (x—xp)[l(x—xp)—l]> , O<x<L

so the exact solution is

1/n
(&) " =010 -x)
G+1)GE+2)

v(X) = O<x<lL

+C3X+Cq4,
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where c3 and ¢4 can be obtained by the other two boundary
conditions, e.g., If the beam has another fixed end, then

FARAMVES FARLMVLES
K, F KTn F

@G+ TGN (E+2)

C3 =
In general, if other boundary conditions are considered and
d?v/dx* > 0, the exact solution is

_ 1/n+2
{(W"‘C])("—XF)‘FQXF"‘CZ}
(*) =

F1(x—xF) 21 1
|:—K1n +C1:| (E-i-]) (E+2)

provided c¢;+F1(x—xp)/KI, #0 for all 0 <x<L. The constants
{c1,C2,C3,C4} can be determined by the boundary conditions.

If further assumes n=1 (i.e., the linear beam), then Eq. (7) can
be simplified as

+C3X+C4

d*v  Fo(x—xp)

dx4 T, O<x<L

Table 1
The parameters of Example 1.

the exact solution for this linear case is simple and can be easily
shown as:

F1(x—xg)
6Kl

If f # 0 (i.e., both constant distributed load and punctual load are
considered), the exact solution can be obtained by incorporating
the solution in case 1 (for n=1) by the additivity property of
linearity. It is clear that the analytic solutions derived in this
section include the classical solutions of the linear Euler-
Bernoulli equation as special cases.

v(x) = (X—XF)> +C1X° + x> +C3x+C4, O<x<L

6. Illustrative examples

Numerical examples are provided in this section to demonstrate
the applicabilities and performances of our algorithm by compar-
ing it with the analytical solutions derived in the previous section.

6.1. Example 1

In this case, only the constant distributed load f is considered.
The parameters are given in Table 1. Assume the two ends of the
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Fig. 1. Example 1. Top figure, the finite element solution of the beam deformation. Bottom figure, the finite element solutions and exact solutions of the displacements at

the free-end (x=L).

Table 2
The parameters of Example 2.
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Fig. 2. Example 2. Top figure, the finite element solutions of the beam deformation. Bottom figure, the finite element solutions and exact solutions of the displacements at

the free-end (x=L).

Table 3
The parameters of Example 3.
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beam are fixed (at x=0) and free (at x=L) respectively, then the
boundary conditions are specified by
v(0)=0, v'(0)=0, v'()=0, v'L)=0 [#3))
The solutions are given in Fig. 1. The top figure shows the beam
deformation obtained by finite element solutions. Clearly when n
increases the beam deformation also increases, which is in line
with common sense. The bottom figure shows the free-end
displacement of the beam vs. the work-hardening index n.
The maximum relative error of the deformation between exact
solution and numerical solution is 1.19% (with n=0.1). For larger n,
the relative errors are significant smaller. Further improvements
may be achieved by increasing the number of elements and/or
decreasing the error tolerance in the NCG method, while, as
expected, these would also increase computational demands
significantly.

6.2. Example 2

In this case we consider the punctual load and let f=0. The
parameters are given in Table 2. The boundary conditions are the
same as those in example 1. The beam deformations are shown in
Fig. 2, top. The displacements of the free-end are given in Fig. 2,
bottom. Similar as in example 1, the maximum relative error is
presented at n=0.1 with the magnitude 2.86%, and the errors
decrease rapidly for larger n.

6.3. Example 3

In this case, we consider both constant distributed load f and
punctual load F. The parameters are given in Table 3. Assume both
ends of the beam are fixed, so the boundary conditions are
specified as:

v(0)=0, v (0)=0, v()=0, v(L)=0

The finite element solutions for different n as well as the exact
solution for n=1 are given in Fig. 3. It is clear that the analytical
solution matches the finite element solution for n=1.

6.4. Example 4

In this example, we consider a beam subjected to a linear
varying distributed load:
fx)=ax+b, O0<x<lL

The boundary conditions are the same as in example 1. The
parameters are given in Table 4. The finite element solutions for
different n as well as the exact solution for n=1 are given in Fig. 4.

6.5. Example 5

In this example, we consider a more complicated case — a
beam subjected to a punctual load

F(x) = Fo(x—xF)
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Fig. 3. Example 3. The deformations of the beams subjected to a uniformly distributed load and a punctual load.

The parameters of Example 4.

D. Wei, Y. Liu / Finite Elements in Analysis and Design 52 (2012) 31-40

ne 1© a b L K I,
8 Line 3 0 1 1 6/[2"(n+2)]
[
c
S 01 = = = n=0.2
g e om0 N=0.8
..g 0.2 ey =1
o @)= n=1, exact
% 0.3 —— =12
< n=1.5
2
= 04
1 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X
Fig. 4. Example 4, deformations of the beams subjected to linear varying distributed load f(x).
Table 5
The parameters of Example 5.
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Fig. 5. Example 5, deformations of the beams subjected to a punctual load and a step load.
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Table 6
The parameters of Example 6.
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Fig. 6. Example 5, continuous beam.

and a step load within the interval [a,b] C [O,L],
, Xxelab
foy= {f [a,b]

0 elsex

The parameters are given in Table 5. The numerical solutions as
well as the exact solution for n=1 are given in Fig. 5.

6.6. Example 6

This example is designed to demonstrate the applicability of
our algorithm to the continuous beam, i.e., the cross sectional
area A(x) of the beam is varying continuously. We consider a
beam with square cross sectional area and its base h(x) of A is
varying linearly w.r.t. x, i.e.,

h(x)=cx+d, O0<x<L
So it yields

h(x)n+3

— O<x<lL
2n+l(n+2)

In(x) =
A uniformly distributed load f is considered and the beam is
assumed with two fixed ends. The parameters are given in
Table 6. The numerical solutions for different n and the exact
solution for n=1 are given in Fig. 6. It is observed that the
deformations of the beams are not symmetrical w.r.t. x=L/2 and
lean towards the left. This agrees with common sense because the
cross sectional area A(x) is increasing.

7. Conclusions and future work

In this work, we use the Ritz-Galerkin finite element method
to approximate the solutions of a nonlinear Euler-Bernoulli beam
equation. Hermite cubic finite elements and a nonlinear conjugate
gradient scheme are used in the Ritz-finite element method.
Convergence and error estimates of the scheme are analyzed.

A finite element code in Matlab is written to implement the
scheme. Analytic solutions for some special cases are derived.
Numerical solutions provided by the finite element code are
compared with the analytic solutions favorably. The results in

this work can be extended to the Euler-Bernoulli plate, which is
considered as future work.
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