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a b s t r a c t

In this paper, we use Hermite cubic finite elements to approximate the solutions of a nonlinear Euler–

Bernoulli beam equation. The equation is derived from Hollomon’s generalized Hooke’s law for work

hardening materials with the assumptions of the Euler–Bernoulli beam theory. The Ritz–Galerkin finite

element procedure is used to form a finite dimensional nonlinear program problem, and a nonlinear

conjugate gradient scheme is implemented to find the minimizer of the Lagrangian. Convergence of the

finite element approximations is analyzed and some error estimates are presented. A Matlab finite

element code is developed to provide numerical solutions to the beam equation. Some analytic

solutions are derived to validate the numerical solutions. To our knowledge, the numerical solutions as

well as the analytic solutions are not available in the literature.

Published by Elsevier B.V.

1. Introduction

The following power-law is frequently used to model axial
stress-strain relations for annealed metals:

s¼ K9e9n�1e

where s is the stress, e is the strain, and K and n are constant.
Materials modeled by the above power-law equation are called
work-hardening materials, sometimes referred to as Hollomon or
Ludwick materials. The values of K and n for some common
annealed metals can be found in undergraduate textbooks and in
engineering literature, e.g., see [1–3]. Modern applications of these
work-hardening metals can be found from bumper beams in the
automobile industry [4] to micro-grippers in bio-engineering [5].

These materials and the power-law equation are widely
introduced to undergraduate engineering students at the sopho-
more level. More sophisticated beam equations that model the
power-law materials exist but are less accessible to the students,
see, e.g., [6–8]. However, to our knowledge, there are very few
mathematical models in the literature which provide simple

bench mark analytic or numerical solutions for modeling
mechanical structures made of these materials.

In this work, we study the following nonlinear beam equation
for the power-law materials:

d2

dx2
KIn

d2v

dx2

�����
�����
n�1

d2v

dx2

0
@

1
A�f ðxÞ ¼ 0, 0oxoL ð1Þ

where v(x) is the transversal deflection of the beam, x is the axial
location, In (where na1) is the generalized moment of inertia.

For the case n¼1, this equation reduces to the standard Euler–
Bernoulli equation for an elastic beam, which has been studied
extensively. For a good account of finite element solutions for this
case, see [9]. Further, Reddy [10] examined nonlinear versions of
elastic Euler–Bernoulli beams (which are more general than linear
case) and their finite element solutions.

Several authors have studied the following similar beam
equation:

nK
df
ds

� �n�1 d2f
ds2
�P sinðfþaÞ ¼ 0, 0osoL ð2Þ

for the power-law materials, where s is the arc length, f is the
bending angle at s, P is the end load applied with an angle a. The
paper by Kang and Li [7] provides a solution of Eq. (2) for a
punctual load at s¼L (the end). Their solution coincides with our
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solution when a¼ p=2. Large deflections of the beam are also
studied by them. Teng and Wierzbicki [11] derived analytic
solutions and numerical solutions of Eq. (2) for a power-law
beam subject to a punctual load at one end. The Timoshenko
beam element in Abacus was used by them to obtain numerical
solutions for comparison with the analytic solutions.

Further, the more recent work of [8] that gives an analytical
solution in couple stress elasto-plastic theory is presented for the
pure bending beam under small deformation.

There are many papers devoted to the study of the Euler–
Bernoulli beam for functionally graded materials with thickness
dependent material constants, for small and large deflections, see
Yahoobi and Feraidoon [12] and the references therein. Wang,
et al. [6] study large deformation of functionally graded cantilever
beams for the power-law material, both experimentally and
analytically.

In this work, we use the Ritz–Galerkin’s finite element method
to approximate the solutions of the power-law Euler–Bernoulli
beam equation. Hermite cubic finite elements and the nonlinear
conjugate gradient scheme (NCG) [13] are used in the Ritz–
Galerkin finite element method for solutions of the beam equa-
tion. A finite element code in Matlab is written to implement the
numerical scheme and to provide numerical solutions. Analytic
solutions including two special cases to the beam equation are
derived for validation of the numerical solutions. It is shown that
the numerical solutions compare favorably with the analytic
solutions. We also provide convergence analysis and error esti-
mates. To our knowledge, these numerical solutions as well as the
analytic solutions are not available in the literature.

2. The power-law Euler–Bernoulli beam equation

A general form of the Hollomon equation can be written
as [14]:

sx
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sz

txy

tyz

tzx

2
6666666664

3
7777777775
¼ C
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ð3Þ

where

C ¼
K9DðuÞ9n�1

ð1þnÞð1�2nÞ

DðuÞ ¼

Ex gxy gxz

gyx Ey gyz

gzx gzy Ez

2
64

3
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9DðuÞ9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

xþE2
yþþE2

z þ2g2
xyþ2g2

yzþ2g2
zx

q

with K and n are material constants. When n¼1, K equals the
Young’s modulus of linear elasticity and n the corresponding
Poisson’s ratio. Note that some notations, e.g., C, may be used for
multiple meanings later. It should incur no ambiguity within the
context. The Lagrangian energy functional IðuÞ for a power-law
elastoplastic body occupying a three dimension body V can be
defined by the kinetic energy minus the elastoplastic potential
energy plus the work done by external forces. It can be written as:

IðuÞ ¼
1

2

Z
V
r _u _ut dV�

1

nþ1

Z
V
sEt dVþ

Z
V

fut dVþ

Z
@V

tut ð4Þ

where e ¼ ðEx,Ey,Ez,gxy,gxz,gyzÞ, and r¼ ðsx,sy,sz,txy,txz,tyzÞ, r is
the density, _u ¼ ð _u, _v, _wÞ the velocity, f ¼ ðf x,f y,f zÞ the body force,
and t¼ ðtx,ty,tzÞ the surface force. For the power-law Euler–
Bernoulli beam, it is assumed that the components of the
displacement satisfy

u¼�y
@v

@x
v¼ vðx,tÞ

w¼ 0

f ¼ ð0,rðx,tÞ,0Þ

t¼ ð0;0,0Þ

8>>>>>>>><
>>>>>>>>:
Therefore

Ex ¼
@u

@x
¼�y

@2v

@x2

Exy ¼
1

2

@u

@y
þ
@v

@x

� �
¼ 0

Ey ¼ Exz ¼ Eyz ¼ Ez ¼ 0

8>>>>><
>>>>>:

Nomenclature

x the local coordinates
V the set of all the possible displacements which give

finite energy and subject to a set of appropriate
essential boundary conditions

wðeÞðxÞ the characteristic (or indicator) function
fc1,c2,c3,c4g the integration constants to be determined by the

boundary conditions
1(x) the unit step function
fðeÞi the ith local finite element shape function for the eth

element interval
s the stress
dðxÞ Dirac delta function
e the strain
A the cross sectional area of the beam
C the connectivity matrix
e the index of the element

F the magnitude of the punctual load
f(x) the vertical distributed load
In the generalized moment of inertia
IðuÞ Lagrangian energy functional
K ,n material constants
lðeÞ the length of the eth subinterval
ne total number of subintervals on x

nL the number of local shape functions
v the vector of global nodal values
v(x) the vertical displacement of the beam at location x

V(x) the global Hermite cubic interpolation function
V ðeÞðxÞ local interpolation function
vðeÞi the ith local nodal value
x the global coordinates
xF the location of the punctual load
GQ Gaussian quadrature
NCG Nonlinear conjugate gradient
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The Lagrangian for the beam is given by

IðvÞ ¼
1

2

Z L

0
r0
_v2
þ

1

nþ1

Z L

0
KIn

@2v

@x2

����
����
nþ1

dx�

Z L

0
f ðxÞvðxÞ dx ð5Þ

where In ¼
R

A9y9
nþ1

dy dz is the generalized moment of inertia of
the beam. The following forth-order beam equation can be
derived by the principle of virtual work:

r0

@2v

@t2
�
@2

@x2
KIn

@2v

dx2

����
����
n�1

@2v

@x2

 !
�f ðxÞ ¼ 0, 0oxoL ð6Þ

where v(x) is the vertical displacement of the beam at the axial
location x; f(x) is the vertical load; A is the cross sectional area of
the beam; See [14] for details of the derivation of (6), which is
referred to as the power-law Euler–Bernoulli beam equation in
this paper, and we only consider analytic and numerical solutions
of the corresponding steady state, i.e., Eq. (1).

3. The Ritz variational principle

It is known that the Euler–Lagrange equation for a Lagrangian
functional of the general form:

IðvÞ ¼

Z b

a
Gðx,vðxÞ,v0ðxÞ,v00ðxÞÞ dx

is

d2

dx2

@G

@v00

� �
�

d

dx

@G

@v0

� �
þ
@G

@v
¼ 0, aoxob

The corresponding natural boundary conditions and essential
boundary conditions are

d

dx

@G

@v00

� �
�
@G

@v0
¼ 0,

@G

@v00
¼ 0, for x¼ a or x¼ b

and

vðaÞ ¼ A,v0ðaÞ ¼ B,vðbÞ ¼ C,v0ðbÞ ¼D

respectively. The Euler–Lagrange equation requires four boundary
conditions in order to have a unique solution. For details, see [15].
In particular, for the steady state power-law Euler–Bernoulli
beam, we have

Gðx,v0ðxÞ,v00ðxÞÞ ¼
KIn

nþ1
9v009nþ1

�fv

and the corresponding Euler–Lagrange equation:

@2

@x2
KIn

@2v

dx2

����
����
n�1

@2v

@x2

 !
�f ðxÞ ¼ 0, 0oxoL ð7Þ

with natural boundary conditions

KIn9v009
n�1

v
000

¼ 0 or KIn9v009
n�1

v00 ¼ 0

at x¼a or x¼b. The Ritz variational principle states that v(x)
represents the displacement of the beam at equilibrium subject to
appropriate boundary conditions if and only if v(x) is the solution
of the following minimization problem:

min IðvÞ s:t: vAV ð8Þ

where V is the set of all the possible displacements which give
finite energy and are subjected to a set of appropriate essential
boundary conditions.

The exact solution v(x) of Eq. (7) can be approximated by the
standard finite element approximation:

V ðeÞðxÞ ¼
XnL

i ¼ 1

fðeÞi ðxÞv
ðeÞ
i ¼/ðeÞT vðeÞ, xðeÞ1 oxoxðeÞ2 ð9Þ

where fðeÞi is the ith local finite element shape function defined in
the eth interval xðeÞ1 oxoxðeÞ2 ; vðeÞi is the ith local nodal value
associated with the exact solution at xðeÞi ; denote
vðeÞ ¼ ½vðeÞ1 vðeÞ2 � � � vðeÞnL

�T and /ðeÞ ¼ ½fðeÞ1 fðeÞ2 � � � f
ðeÞ
nL
�T ; e is the index

of the element; nL is the number of local shape functions.
A natural choice of the shape functions for our problem is the

Hermite cubic shape functions [9], which are defined as:

fðeÞ1 ¼ 1�3
x

lðeÞ

� �2

þ2
x

lðeÞ

� �3

, fðeÞ2 ¼�x 1�
x

lðeÞ

� �2

fðeÞ3 ¼ 3
x

lðeÞ

� �2

�2
x

lðeÞ

� �3

, fðeÞ4 ¼�x
x

lðeÞ

� �2

�
x

lðeÞ

� �" #

and the corresponding second derivatives which will be used
latter are also given below:

d2fðeÞ1

dx2
¼�

6

½lðeÞ�2
1�

2x

lðeÞ

� �
,

d2fðeÞ2

dx2
¼�

2

lðeÞ
3x

lðeÞ
�2

� �

d2fðeÞ3

dx2
¼

6

½lðeÞ�2
1�

2x

lðeÞ

� �
,

d2fðeÞ4

dx2
¼�

2

lðeÞ
3x

lðeÞ
�1

� �

where x ¼ x�xðeÞ1 is the local coordinates; lðeÞ ¼ xðeÞ2 �xðeÞ1 is the
length of the eth subinterval.

Let ne denote the total number of subintervals on x. In the
Ritz–Galerkin method, we look for the solution by minimizing the
following energy function:

IðVÞ ¼
Xne

e ¼ 1

IðeÞðV ðeÞÞ

where

IðeÞðV ðeÞÞ ¼
1

nþ1

Z xðeÞ
2

xðeÞ
1

KIn
d2V ðeÞ

dx2

�����
�����
nþ1

dx�

Z xðeÞ
2

xðeÞ
1

f ðxÞV ðeÞ dx

and VðxÞ ¼
Pne

e ¼ 1 wðeÞV
ðeÞ
ðxÞ is global Hermite cubic interpolation

function, V ðeÞðxÞ is given in Eq. (9);

wðeÞðxÞ ¼
1 if xA ½xðeÞ1 , xðeÞ2 �

0 if x=2½xðeÞ1 , xðeÞ2 �

8<
:

is the characteristic (or indicator) function.
Denote v¼ ½v1 v2 � � � v2neþ2�

T as the global nodal values, then
the connections between the global nodal values and local nodal
values are

v2e�1 ¼ vðeÞ1 , v2e ¼ vðeÞ2

v2eþ1 ¼ vðeÞ3 , v2ðeþ1Þ ¼ vðeÞ4 for e¼ 1, . . . ,ne:

So the eth row of the 2ðneþ1Þ � 4 connectivity matrix C can be
defined by

½ce,1,ce,2,ce,3,ce,4� ¼ ½2e�1;2e,2eþ1;2eþ2�, for e¼ 1;2, . . . ,ne:

It can be shown that I(V) is convex function of v and has a unique
global minimum at which the gradient rI must equal 0, i.e.,
@I=@v¼ 0. The gradient of the local element energy function IðeÞ

relative to the local degrees of freedom vðeÞ ¼ ½vðeÞ1 , vðeÞ2 , vðeÞ3 , vðeÞ4 �
T is

@IðeÞ

@vðeÞ
¼

@IðeÞ

@vðeÞ1

,
@IðeÞ

@vðeÞ2

,
@IðeÞ

@vðeÞ3

,
@IðeÞ

@vðeÞ4

" #T

¼
1

nþ1

Z xðeÞ
2

xðeÞ
1

KIn
@

@vðeÞ
d2V ðeÞ

dx2

�����
�����
nþ1

0
@

1
Adx�

Z xðeÞ
2

xðeÞ
1

f ðxÞ
@V ðeÞ

@vðeÞ
dx ð10Þ
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Since V ðeÞ ¼/ðeÞT vðeÞ and d2V ðeÞ=dx2
¼ ðd2

/ðeÞT=dx2
ÞvðeÞ, we have

@V ðeÞ

@vðeÞ
¼/ðeÞ,

@

@vðeÞ
d2V ðeÞ

dx2

 !
¼

d2/ðeÞ

dx2

and

@

@vðeÞ
d2V ðeÞ

dx2

�����
�����
nþ1

¼ ðnþ1Þ
d2V ðeÞ

dx2

�����
�����
n�1

d2V ðeÞ

dx2

 !
@

@vðeÞ
d2V ðeÞ

dx2

 !

¼ ðnþ1Þ
d2V ðeÞ

dx2

�����
�����
n�1

d2V ðeÞ

dx2

 !
d2/ðeÞ

dx2
ð11Þ

Substituting Eq. (11) into Eq. (10), it yields

@IðeÞ

@vðeÞ
¼

Z xðeÞ
2

xðeÞ
1

KIn
d2V ðeÞ

dx2

�����
�����
n�1

d2V ðeÞ

dx2

 !
d2

/ðeÞ

dx2
dx�

Z xðeÞ
2

xðeÞ
1

f ðxÞ/ðeÞ dx

ð12Þ

So the gradient of the global energy function is

@I

@v
¼

@I

@v1
,
@I

@v2
, . . . ,

@I

@v2ðneþ1Þ

� �T

where

@I

@vj
¼
Xne

e ¼ 1

X
cðe,iÞ ¼ j

@IðeÞ

@vðeÞi

The summation
Pne

e ¼ 1

P
cðe,iÞ ¼ j is performed over all elements

with local nodes that share the global node number j. In the
process of evaluating the integral in Eq. (12), numerical overflow
may arise for 0ono1 and for small values of the term
9d2V ðeÞ=dx29, since the term 9d2V ðeÞ=dx29n�1

may take on very large
values and lead to divergence. One simple remedy to this problem
is to evaluate the term in the following way:

d2V ðeÞ

dx2

�����
�����
n�1

d2V ðeÞ

dx2

 !
¼

d2V ðeÞ

dx2

 !n

if
d2V ðeÞ

dx2
Z0

�
d2V ðeÞ

dx2

�����
�����
n

if
d2V ðeÞ

dx2
o0

8>>>>><
>>>>>:

In order to evaluate the integrals in IðeÞ and rIðeÞ, numerical
integration, such as Gaussian quadrature (GQ), can be performed.
The GQ is a quadrature rule to yield an exact solution for
polynomials of degree 2nQ�1 or less by a suitable choice of the
points xi and weights oi, where nQ is the number of the points
chosen for the quadrature. A detailed table for the values of oi

and xi can be found in [16].

4. Convergence of the finite element approximations

Let fðxÞ ¼ 9x9r�2
x, then the following inequalities:

9x�y92rCðfðxÞ�fðyÞ,x�yÞð9x9þ9y9Þ2�r
ð13Þ

9fðxÞ�fðyÞ9rC9x�y9r�1
for 1oro2 ð14Þ

hold for all x, yARm, where mZ1, (x,y) denotes the inner product;
the constant C40 is independent of x and y. A simple proof of the
above inequalities is shown in [17,18]. The convergence and error
analysis of our problem is based on the Aubin-Nitsche trick and
the above inequalities. Let r¼nþ1, let W2,r

b ð0,LÞ be the space
defined by the set of admissible functions v satisfyingR L

0 ð9v
009r
þ9v09r

þ 9v9r
Þ dxo1; where vð0Þ,vðLÞ,v0ð0Þ, and v0ðLÞ are

given, and let W2,r
0 ð0,LÞ be the set of admissible functions u with

zero boundary conditions, satisfying
R L

0 ð9u
009r
þ9v09r

þ9u9r
Þ dxo1,

the corresponding uð0Þ,uðLÞ,u0ð0Þ, and u0ðLÞ are zero. Then, the

problem of finding the minimizer v of the energy functional I(v)
for the solution of our beam equation can be written as the
following variational equivalent problem:

Problem (P0). Find vAW2,r
b ð0,LÞ, such that for all uAW2,r

0 ð0,LÞ,

aðv,uÞ ¼/f ,uS

where aðv,uÞ ¼
R L

0 KIn9@2v=dx29n�1
ð@2v=@x2,@2u=@x2Þ dx, and

/f ,uS¼
R L

0 fu dx.

If S2,r
b,hð0,LÞ denotes the set of global Hermite cubic finite

element interpolation functions as a conformal subspace of
W2,r

b ð0,LÞ, then the minimizer Uh of I(U) over the set S2,r
b,hð0,LÞ is

the unique solution of the following problem:

Problem (Ph). Find UhAS2,r
b,hð0,LÞ, such that for all UAS2,r

0,hð0,LÞ:

aðUh,UÞ ¼/f ,US

where aðUh,UÞ ¼
R L

0 KIn9@2Uh=dx29n�1
ð@2Uh=@x2,@2U=@x2Þ dx, and

/f ,US¼
R L

0 fU dx. By the Aubin-Nitsche trick and the above
inequalities, we have the following error estimate:

Theorem. Let v be the exact solution of ðP0Þ and let Uh be the finite

element solution of ðPhÞ, let h¼max1r irNDxi be the maximum finite

element mesh size, then

Jv�UhJrCh1=ð3�rÞ
ð15Þ

where Jv�UhJ¼ ð
R L

0 9v00ðxÞ�U00hðxÞ9
r

dxÞ1=r , and C is a generic constant

independent of h.

The proof is omitted here since it similar to the classical work
of Glowinski and Morrocco [18]. Similar optimal error estimates
can be obtained by the work of Barrett and Liu [19]. Since r¼nþ1,
the order of convergence is Oðh1=ð2�nÞ

Þ. It equals O(h) when n¼1
and Oðh1=2

Þ when n-0. This partially explains that convergence is
slower, in our numerical examples, for values of n closer to zero.
For the optimization problem (Eq. (8)) in this work, many non-
linear optimization techniques [20], e.g., nonlinear conjugate
gradient (NCG), Newton–Raphson, interior-point or active-set
method, are applicable. We implemented NCG simply for its good
combination among the simplicity, the convergence rate and
computational efficiency. Further, only the gradient of the objec-
tive function is involved in NCG method, rendering it numerically
more robust than methods requiring Hessian matrix (e.g., New-
ton–Raphson method). Slight modifications are made to accom-
modate the constraints. Note, If let JðxÞ ¼ IðVÞ, in which x¼

½v1,v2, . . . ,v2neþ2�
T , even though rJ is not a self-adjoint positive

definite matrix, it however has the ‘‘monotonicity’’ property,
i.e., /rJðxÞ�rJðyÞ,x�ySZCJx�yJ2 for all x,y, by using (14). This
inequality provides the sufficient condition for convergence of the
NCG iterations. See, e.g., [21] for proof of convergence.

5. Exact solutions for some special cases

We show that in some special cases, analytical solutions of the
power-law Euler–Bernoulli Eq. (1) can be derived for na1. Many
analytic solutions to the case n¼1 are classical and we do not
elaborate on them. These analytic solutions provide us more
insight for the problem solutions and also they can be a perfor-
mance measure of the finite element solutions. In this section,
KIn is assumed constant w.r.t x.

D. Wei, Y. Liu / Finite Elements in Analysis and Design 52 (2012) 31–4034
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5.1. Case 1, constant distributed load

If f(x) is constant (w.r.t. x), then Eq. (7) has the following
equivalent form:

d2

dx2

d2v

dx2

�����
�����
n�1

d2v

dx2

0
@

1
A¼ f

KIn
, 0oxoL ð16Þ

By double integration of Eq. (16), it yields

d2v

dx2

�����
�����
n�1

d2v

dx2
¼

f

2KIn
x2þc1xþc2 ð17Þ

If the beam has a free-end at x¼L, i.e.,

d2v

dx2

�����
x ¼ L

¼ 0,
d3v

dx3

�����
x ¼ L

¼ 0 ð18Þ

Then the unknown constant c1 and c2 in Eq. (17) can be
determined. Taking derivative of Eq. (17), we get

d

dx

d2v

dx2

�����
�����
n�1

d2v

dx2

0
@

1
A
������
x ¼ L

¼ n
d2v

dx2

�����
�����
n�1

d3v

dx3

������
x ¼ L

¼
fL

KIn
þc1 ¼ 0

hence c1 ¼�fL=KIn and correspondingly c2 ¼ fL2=2KIn. Therefore,
Eq. (17) can be written in the form of complete squares:

d2v

dx2

�����
�����
n�1

d2v

dx2
¼

f

2KIn

� �
x2�2LxþL2
� 	

¼
f

2KIn

� �
ðL�xÞ2 ð19Þ

Note, Eq. (19) implies d2v=dx2
Z0 if f 40 (the vice versa,

d2v=dx2r0 if f o0, the derivations to the solutions are similar
for these two cases). So the analytical solution v(x) can be
derived:

d2v

dx2
¼

f

2KIn

� �1=n

ðL�xÞ2=n

so

vðxÞ ¼

f
2KIn

� 	1=n

2
nþ1

 �

2
nþ2

 �ðL�xÞ2=nþ2

þc3xþc4

where c3 and c4 can be determined by the other two boundary
conditions, e.g., if the beam is fixed at another end:

vð0Þ ¼ 0,
dv

dx

����
x ¼ 0

¼ 0

then we have

c3 ¼

f
2KIn

� 	1=n
L2=nþ1

2
nþ1

 � , c4 ¼�

f
2KIn

� 	1=n
L2=nþ2

2
nþ1

 �

2
nþ2

 �

In general, if different (other than free-end in Eq. (18)) boundary
conditions are considered, the complete square form of Eq. (19)
can not be obtained, i.e., c2

1�2fc2=KIna0, then the solution
becomes much more complicated. Since the function lðtÞ ¼
9t9n�1

t has the inverse function l�1
ðtÞ ¼ 9t91=n�1

t, so the analytical
form of d2v=dx2 can be derived from Eq. (16):

d2v

dx2
¼

f

2KIn
x2þc1xþc2

����
����
1=n�1 f

2KIn
x2þc1xþc2

� �

If d2v=dx2
Z0, then by taking an integral of the above equation, it

yields

dv

dx
¼ c3þ

21=nnKIn

f ð1þnÞ
c1�
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where function 2F1 is the well-known Gauss hypergeometric
function, see the definition in [22,23]. The constants c1,c2,c3 and
the solution v(x) can be obtained by applying the boundary
conditions, and using numerical integration of dv/dx.

It is well-known that if n¼1, the problem becomes linear and
much simpler since the term 9dv=dx9n�1

is gone, then we have

d4v

dx4
¼

f

KIn
, 0oxoL

The analytical solution can be easily obtained, that is

vðxÞ ¼
f

24KIn
x4þc1x3þc2x2þc3xþc4

Where the integration constants fc1,c2,c3,c4g can be determined
by the boundary conditions.

5.2. Case 2, punctual load

If the punctual load Fdðx�xF Þ is considered, then Eq. (7) has the
following form:

d2

dx2

d2v

dx2

�����
�����
n�1

d2v

dx2

0
@

1
A¼ Fdðx�xF Þ

KIn
, 0oxoL

where F and xF are the magnitude and the location (0oxF oL) of
the punctual load respectively. Hence

d2v

dx2

�����
�����
n�1

d2v

dx2
¼

F1ðx�xF Þ

KIn
ðx�xF Þþc1xþc2, 0oxoL

where 1ðx�xF Þ is the unit step function, c1 and c2 are determined
by boundary conditions, e.g., If the free-end boundary conditions
are considered (Eq. (18)), by following the similar idea of case 1,
we have

d

dx

d2v

dx2

�����
�����
n�1

d2v

dx2

0
@

1
A
������
x ¼ L

¼ n
d2v

dx2

�����
�����
n�1

d3v

dx3

������
x ¼ L

¼
F

KIn
þc1 ¼ 0, 0oxoL

so c1 ¼�F=KIn and correspondingly c2 ¼ FxF=KIn. Hence

d2v

dx2

�����
�����
n�1

d2v

dx2
¼

F1ðx�xF Þ

KIn
ðx�xF Þ�

F

KIn
xþ

FxF

KIn

¼
F

KIn
ðx�xF Þ½1ðx�xF Þ�1�, 0oxoL ð20Þ

Note, same as the case 1, Eq. (20) implies d2v=dx2
Z0 if F40 (vice

versa, for d2v=dx2r0 if Fo0, the solutions are also similar).
Hence, at this case

d2v

dx2

 !
¼

F

KIn
ðx�xF Þ½1ðx�xF Þ�1�

� �1=n

, 0oxoL

so the exact solution is

vðxÞ ¼

F
KIn

� 	1=n
ðxF�xÞ1=nþ21ðxF�xÞ

1
nþ1

 �

1
nþ2

 � þc3xþc4, 0oxoL
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where c3 and c4 can be obtained by the other two boundary
conditions, e.g., If the beam has another fixed end, then

c3 ¼

F
KIn

� 	1=n
x1=nþ1

F

1
nþ1

 � , c4 ¼�

F
KIn

� 	1=n
x1=nþ2

F

1
nþ1

 �

1
nþ2

 �

In general, if other boundary conditions are considered and
d2v=dx2

Z0, the exact solution is

vðxÞ ¼

F1ðx�xF Þ

KIn
þc1

� �
ðx�xF Þþc1xFþc2

� �1=nþ2

F1ðx�xF Þ

KIn
þc1

� �2 1

n
þ1

� �
1

n
þ2

� � þc3xþc4

provided c1þF1ðx�xF Þ=KIna0 for all 0oxoL. The constants
fc1,c2,c3,c4g can be determined by the boundary conditions.

If further assumes n¼1 (i.e., the linear beam), then Eq. (7) can
be simplified as

d4v

dx4
¼

Fdðx�xF Þ

KIn
, 0oxoL

the exact solution for this linear case is simple and can be easily
shown as:

vðxÞ ¼
F1ðx�xF Þ

6KIn
ðx�xF Þ

3
þc1x3þc2x2þc3xþc4, 0oxoL

If f a0 (i.e., both constant distributed load and punctual load are
considered), the exact solution can be obtained by incorporating
the solution in case 1 (for n¼1) by the additivity property of
linearity. It is clear that the analytic solutions derived in this
section include the classical solutions of the linear Euler–
Bernoulli equation as special cases.

6. Illustrative examples

Numerical examples are provided in this section to demonstrate
the applicabilities and performances of our algorithm by compar-
ing it with the analytical solutions derived in the previous section.

6.1. Example 1

In this case, only the constant distributed load f is considered.
The parameters are given in Table 1. Assume the two ends of the

Table 1
The parameters of Example 1.

ne L f(x) lðeÞ K In

8 1 1 L=ne 1 6=½2n
ðnþ2Þ�
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Fig. 1. Example 1. Top figure, the finite element solution of the beam deformation. Bottom figure, the finite element solutions and exact solutions of the displacements at

the free-end (x¼L).

Table 2
The parameters of Example 2.

ne L F lðeÞ xF K In

8 1 3 L/ne 0.5 1 6=½2n
ðnþ2Þ�
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beam are fixed (at x¼0) and free (at x¼L) respectively, then the
boundary conditions are specified by

vð0Þ ¼ 0, v0ð0Þ ¼ 0, v00ðLÞ ¼ 0, v
000

ðLÞ ¼ 0 ð21Þ

The solutions are given in Fig. 1. The top figure shows the beam
deformation obtained by finite element solutions. Clearly when n

increases the beam deformation also increases, which is in line
with common sense. The bottom figure shows the free-end
displacement of the beam vs. the work-hardening index n.
The maximum relative error of the deformation between exact
solution and numerical solution is 1.19% (with n¼0.1). For larger n,
the relative errors are significant smaller. Further improvements
may be achieved by increasing the number of elements and/or
decreasing the error tolerance in the NCG method, while, as
expected, these would also increase computational demands
significantly.

6.2. Example 2

In this case we consider the punctual load and let f¼0. The
parameters are given in Table 2. The boundary conditions are the
same as those in example 1. The beam deformations are shown in
Fig. 2, top. The displacements of the free-end are given in Fig. 2,
bottom. Similar as in example 1, the maximum relative error is
presented at n¼0.1 with the magnitude 2.86%, and the errors
decrease rapidly for larger n.

6.3. Example 3

In this case, we consider both constant distributed load f and
punctual load F. The parameters are given in Table 3. Assume both
ends of the beam are fixed, so the boundary conditions are
specified as:

vð0Þ ¼ 0, v0ð0Þ ¼ 0, vðLÞ ¼ 0, v0ðLÞ ¼ 0

The finite element solutions for different n as well as the exact
solution for n¼1 are given in Fig. 3. It is clear that the analytical
solution matches the finite element solution for n¼1.

6.4. Example 4

In this example, we consider a beam subjected to a linear
varying distributed load:

f ðxÞ ¼ axþb, 0oxoL

The boundary conditions are the same as in example 1. The
parameters are given in Table 4. The finite element solutions for
different n as well as the exact solution for n¼1 are given in Fig. 4.

6.5. Example 5

In this example, we consider a more complicated case — a
beam subjected to a punctual load

FðxÞ ¼ Fdðx�xF Þ
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Fig. 2. Example 2. Top figure, the finite element solutions of the beam deformation. Bottom figure, the finite element solutions and exact solutions of the displacements at

the free-end (x¼L).

Table 3
The parameters of Example 3.

ne L f(x) lðeÞ F xF K In

8 1 1 L/ne �0.4 0.5 1 6=½2n
ðnþ2Þ�
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Fig. 3. Example 3. The deformations of the beams subjected to a uniformly distributed load and a punctual load.

Table 4
The parameters of Example 4.

ne lðeÞ a b L K In

8 L/ne 3 0 1 1 6=½2n
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Fig. 4. Example 4, deformations of the beams subjected to linear varying distributed load f(x).

Table 5
The parameters of Example 5.

ne lðeÞ L a b f F xF K In

8 L/ne 1 0.7L 0.9L 5 �0.25 0.5 1 6=½2n
ðnþ2Þ�
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Fig. 5. Example 5, deformations of the beams subjected to a punctual load and a step load.
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and a step load within the interval ½a,b� � ½0,L�,

f ðxÞ ¼
f , xA ½a,b�

0 else x

�

The parameters are given in Table 5. The numerical solutions as
well as the exact solution for n¼1 are given in Fig. 5.

6.6. Example 6

This example is designed to demonstrate the applicability of
our algorithm to the continuous beam, i.e., the cross sectional
area A(x) of the beam is varying continuously. We consider a
beam with square cross sectional area and its base h(x) of A is
varying linearly w.r.t. x, i.e.,

hðxÞ ¼ cxþd, 0oxoL

So it yields

InðxÞ ¼
hðxÞnþ3

2nþ1
ðnþ2Þ

, 0oxoL

A uniformly distributed load f is considered and the beam is
assumed with two fixed ends. The parameters are given in
Table 6. The numerical solutions for different n and the exact
solution for n¼1 are given in Fig. 6. It is observed that the
deformations of the beams are not symmetrical w.r.t. x¼ L=2 and
lean towards the left. This agrees with common sense because the
cross sectional area A(x) is increasing.

7. Conclusions and future work

In this work, we use the Ritz–Galerkin finite element method
to approximate the solutions of a nonlinear Euler–Bernoulli beam
equation. Hermite cubic finite elements and a nonlinear conjugate
gradient scheme are used in the Ritz-finite element method.
Convergence and error estimates of the scheme are analyzed.

A finite element code in Matlab is written to implement the
scheme. Analytic solutions for some special cases are derived.
Numerical solutions provided by the finite element code are
compared with the analytic solutions favorably. The results in

this work can be extended to the Euler–Bernoulli plate, which is
considered as future work.
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