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Abstract 

In this work we present some analytic and semi-analytic traveling wave solutions of a 

generalized Burgers’ equation for non-isothermal unidirectional flow of viscous non-Newtonian 

fluids obeying the Gee-Lyon nonlinear rheological equation. The solutions include the 

corresponding well-known traveling wave solution of the Burgers’ equation for Newtonian flow 

as a special case. We also derive estimates of shock thickness for the non-Newtonian flows.  
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1. Introduction  

In this work we derive a traveling wave solution to the following generalized Burgers’ equation 
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in which the constant b  be defined by   
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It is well-known that for   0c = , equation (1) is the classical Burgers’ equation for Newtonian 

fluid flows and the traveling wave solution is 
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satisfying the upstream and downstream boundary conditions 
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 It is interesting to note that if the second term in our solution (2) is dropped, the first term  

coincides with the classical solution. So the solution to the Non-Newtonian flow equals the 

solution to the Newtonian flow plus an extra term “ [ , ]extra b v ”. We also show that using the first 

order approximation, the thickness δ  of the transition layer between upstream and downstream 

can be given by 0
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 which for 0c =  gives the corresponding 

classical estimate 0
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for the Newtonian fluid flows.  Similar results for the power-

law flows have been established in [14].  Although the profiles of the transition layer for both the 

power-law flows and the Gee-Lyon flows look similar, the mathematical solutions describing 

these profiles are quite different. 

2.  The generalized Burgers’ equation  

The general Navier-Stokes equation for incompressible viscous flows is given by 
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 is the fluid velocity,  
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are the stress tensor and the strain tensor, ρ  is the density, g
�

 the external force, p the scalar 

pressure, and 
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. The Navier-Stokes equation (4),  in this case, takes the following simple 

scalar form  
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Rheological relationship between σ
�

 and Du
�

 are frequently used to determine the type of fluids.  

Polyethylene and polystyrene melts can be described approximately by a rheological equation 

proposed by Rabinowitch and later generalized by Gee and Lyon [13], taking into the account 

that the viscocity of these fluids depend highly on the temperature and the high stress levels. The 

rheological equation proposed by Gee and Lyon is given by  
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satisfying the rheological equation (6), as Gee-Lyon Flows. 



If 0c = , then the fluid is said to be a Newtonian fluid; it is  non-Newtonian if 0c ≠ .  For many 

important industrial polymer fluids, the values of , E, R,   and  A c n  are available experimentally.  

For the axial flows, the rheological equation (6) reduces to
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generalized Burgers’ equation  
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where  ( ) (1 | | ) ,  0nt c t t cφ = + < < ∞ .   Equation (7) is referred to as the generalized Burgers’ 

equation for the Gee-Lyon Flows.      

For 0c = ,  0
µ

ν
ρ

= ,  (7)  reduces to  the Burgers’ equation for Newtonian flows 
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has the celebrated  traveling wave solution 2
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where x tξ λ= − , 
1

u and 
2

u  are downstream  and upstream fluid velocities. 

 It can be shown that there exists of a thin transition layer of thickness δ in the order
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(9).  This thickness δ can be referred to as the shock thickness, which tends to zero as 0ν → , 

and for fixed ν ,  
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, as ( )u uδ → ∞ − → ∞ .  See, for example, [8] or [11] for derivation of (9) and 

analysis of (8). In this work, we find analytic and semi-analytic solutions to (7) for  

0,  and 2c n≠ = , and we derive the corresponding order of  thickness for the  transition layers in   

non-isothermal flow of viscous non-Newtonian fluids.  Applications these types of flows are 



abundant in studying of flows in drilling fluids, food, oil, polymer etc, see e.g. [3], [1], and [12]. 

There are numerous papers denoted to study equation (5) in the literature for understanding 

shock formation and traveling waves in Newtonian flows dating back to the original papers of 

Burgers, Hopf, and Cole, see [5],  [6], and [9].  A generalized Burger’s equation for Non-

Newtonian flows based on the Maxwell model has recently been studied in [6]. Traveling wave 

solutions for a Burgers’ equation for the power-law flows are given in [14].   We have not found 

any paper which deals with the Burgers’ equation (7) for Gee-Lyon flows with 0,  and 2.c n≠ =  

  

3.  The integral equations for the traveling waves and the solutions 
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Where A  is an arbitrary integration constant. Applying the downstream and upstream boundary 
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Without loss of generality, in the following, we assume that 
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to the Burgers’ equation for Newtonian flows. 

 In the following, we are interested in finding solutions to (13) for 0 and 2c n≠ = .   
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and (13) becomes 
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Let the constant b  be defined by  
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By using Mathematica, we find that 
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solution of (1) is implicitly defined by 
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We have omitted the integration constants in the above solutions. For simplicity, we plot the 

profile of the transition layer of ( )u u ξ= and provide the following graphic representation of the 

profiles of  the transition layers  



 

 

The blue curves correspond to 0.5,  0.35,  and 0.25 respectivelyb =  and the red curve represents 

the classical solution corresponding to 0.0.b =  

 

4.  The order of thickness of the transition layers  

The transition layer thickness or the shock thickness can be estimated by using the first order 
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Let δ denote the thickness of the transition layer, using Taylor 

expansion, we have 
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which is the first order approximation of the thickness of the transition layer for the power-law 

flows. This estimate, for 0c = ,  gives the well-known estimate 0
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of the transition layer of the Newtonian flows. 

  

6.  Conclusion  

 

In this work, we consider a generalized Burgers’ equation for the Gee and Lyon fluid flows, and 

derive a new general traveling wave solution of this equation.  As special cases of this solution, 

we show several analytic solutions and profiles of the transition layers of the solutions. We 

defined a first order approximation of the thickness of the transition layer or thickness of the 

shock which generalized the known estimate for the shock thickness of the corresponding 

Burgers’ solution for the Newtonian flows.  
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