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EXISTENCE, UNIQUENESS, AND NUMERICAL ANALYSIS OF SOLUTIONS 
OF A QUASILINEAR PARABOLIC PROBLEM* 

DONGMING WElt 

Abstract. A quasilinear parabolic problem is studied. By using the method of lines, the existence and 
uniqueness of a solution to the initial boundary value problem with sufficiently smooth initial conditions 
are shown. Also given are L2 error estimates for the error between the extended fully discrete finite element 
solutions and the exact solution. 
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1. Introduction. In this work, we show that, by using the method of lines, the 
quasilinear parabolic problem governed by the p-harmonic operator has a unique weak 
solution which is more "classical" than the weak solution obtained by applying the 
theory of Kacur [4], in the sense that it satisfies the equation pointwise with respect 
to time. Therefore, in finding numerical solutions to this problem, integration can be 
carried out only on the spatial domain. In the formulation of this problem integration 
over the time interval is not needed while it was needed in the formulation used in 
[4]. With this formulation, L2 error estimates for the error between the true solution 
and its fully discrete approximations are obtained. In [7] and [1O]-[12], the method 
of lines is extensively used. 

2. An existence and uniqueness result. Throughout this paper, we shall assume 
that fl is a bounded convex domain in Rn with smooth boundary fl, and p _ 2. We 
also use u ( t) or simply u to denote function u (x, t) which is defined on fQ x [0, T], T > 0. 
We use the following notation 

u=[fuPcx]'~, 2=[ u2cix 1/2 
IU 1 =[ IV Ul P dx ] , 11 U 112 

I 
U 12 dx] 

II- 112 is the usual L2(fQ) norm and || the seminorm for W` P(f) which is a norm for 

Let A: W" P(f) -* ( Wl P(f))* be the operator defined by 

(Au, v) = IVuIP-2(Vu, Vv) dx for v E WI P(f). 

For definitions of Sobolev spaces Wl`(fl), Wl`(fl), and 
(W1'P(f1))*, 

see [2], [5]. 
We quote the following lemma from [3]. 
LEMMA 1. There exist constants a > 0 and 3 > 0, such that, for p ? 2, 

a IIu - vlP = (Au -Av, u - v) 
and 

IlAu - Av II* -< 13(11 u 11 +1 Vl v ly-2 _ 
11 u _ v 11 for any u, v E W"P P(Q). 

Note. For p _ 2, L2(fQ) D WI"p(f). In following (*, *) is understood as the usual 
inner product in L2(fQ) and ( as the duality for a pair in W `(fl) x ( W1 P(f1))*. 

* Received by the editors January 16, 1989; accepted for publication (in revised form) February 13, 1991. 
t Department of Mathematics, University of New Orleans, Lakefront, New Orleans, Louisiana 70148. 
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LEMMA 2. For any g c WP '(Q), the problem 

(Au, v) = (g, v) for any v E WOP(fQ), u Ian = UolaO 

has a unique solution u c W1P (fQ), where uo E WP 0 (Q). 
Proof. Since fl is a bounded set, we have 

( W1,p(f))*D Wl.q(fD) =,p(D ) 

where q = p/(p - 1), and thus g c ( Wl.P(f))*. And by Lemma 1, A is a strictly monotone 
operator. Therefore A satisfies all the conditions in Theorem 29.5 [2, pp. 242-243]. By 
the conclusion of this theorem, the problem has a unique solution. 

Consider the following nonlinear evolution problem 

(1) du +Au =f; x Qfli t E(0, T], dt 

(2) u(x, t) = 0f(x), x c ofk, t E (0, T], 

(3) u(x, 0) = u0(x), x E f, 

where u0 c W'P (fQ), u0j,n = b and f: [0, T] -* L2(fQ) is Lipschitz continuous, i.e., there 
exists a positive constant L such that |If(t) -f(t') 112_ LIt - t'I for any t, t' [0, T]. 

Note. Here we only consider fixed boundary conditions since the method of lines 
does not apply to this problem with time-dependent boundary conditions. This is clear 
since (8) requires u(ti)-u(ti-1) Wo'P(fl). 

DEFINITION 1. Let u(x, t): [0, T] -* L 2(f). If there exists a function g(x, t) such 
that 

lim u(t + At) - u(t) _ g(t) =0, 
At-0 A&t 2 

we then say that u is differentiable at t, and g(x, t) is called the derivative of u(x, t) 
at t, which is denoted by du(x, t)/dt. 

DEFINITION 2. We say that u is a solution of (1)-(3) if u(x, t) c W1'P(fQ) for all 
t (O, T], 

(4) Kdtu v +(Au, v)=(f v), 

(5) (u(0), v) = (u0, v) for any v c Wo P(Q) 

and 

(6) u(x, t) = f(x), x E afd, t E (0, T], 

where du(x, t)/dt is the derivative in the sense of Definition 1, u0E W'p(Q), 
uolIn = f(x). 

THEOREM 1. Suppose that uo E W P(fQ) and V _ (IVu0Ip-2Vu0) E L2(fQ), then problem 
(1)-(3) has a unique solution u in the sense of Definition 2. Furthermore, 
u C[O, T; W1'P(fl)] and du/dt c C[O, T; Wh'P(fl)]. 

Let {ti}i=o0n be uniform partition of [0, T], At = T/n, and ti = iAt. Consider the 
following recursive nonlinear elliptic problems. 

Given uj_j, find ui such that 

(7) (u 1Ui v) + (Aui, v)=(f,v), 

(8) ui=uui1, on df forany ve Wo'P(f), 

where ui = u(x, ti), f =f(x, ti), i = 1, n. 
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Lemma 2 above assures that for each such partition {tj}j=0,,, (7), (8) can generate 
a unique sequence {u1}ui n in w' P(Q). 

To prove Theorem 1, we first establish several lemmas, namely Lemmas 3-7, under 
the hypothesis of the theorem, i.e., V _ 

(jVuOjp-2Vu0) c L2(fQ). In the following C(uo,f) 
denotes a generic constant depending only on u0 and f 

LEMMA 3. For the above sequence {uili=O,n, there exists a constant C(uo, f) such that 

(9) ||A =| C(Uo,f)) At 2 

Proof. In (7), let i = 1, v = (ul - uo)/At. We have 

U 2 1 K l u- uo (A ui-uo) 
||' |+ Z(Auj -AuO,ujl-u"o)= (fl, 1Z )- (Auo, I ) 

At 2 At At At 

which implies that 

(10) 1 jt f2 flI211 uuAt 2 ( Auo,u) 

since, by Lemma 1, ( 1/A t)(AuI - Auo, uI - u0)o 0. 
Applying the divergence theorem to the second term in the right-hand side of (10) 

and using the fact that u1 - u0Ez Wo'(fQ), we have 

2 u1-u0 ~~~~V (I'Vuop2,V uo)( u)d 
At 2 Alli211 At 2+ A u01t A dx 

-'(jlfl 12+ IV 1(VuoIP2Vuo)112) 9u'- At 2 

and hence obtain 

A ut < (lfl 112 + liV (1V1o22Vuo) I2). 

Since, by letting v = ui - ui-1 for i ? 2 in (7), 

(- Ui1i 

K 9 U- UAti + (Aui, ui - uj-1) = (figU Ui-1)1 

KUi-1 - Ui-2 U - ij + A i,u - i, =f-, iu- At 

we have 

(iAt ' i Ui-ui l+(Auj-Auj_ls uj-uj_l) 

K =u, u1 i-\?i-ui-lA + u(f--19ui-ui-1) 

At 

which implies, by Lemma 1 again, 

Ui -Ui 
11 ui - Ui-112+a1ui -ui-l1P At 2 

__ Ui-uI -Ui2 +I-11)~u-, 2 
At 2 /-i112 

jU _u _12 
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And hence, by (12) and the Lipschitz continuity off, we have 

11U, - Uj 1 C1 Ui-I - Ui-2l+ 1--l2 

At 2 At 2 
(13) 

-||Ui_l Ui_2|| +AtL. 
At 2 

By (11 ) and (13), we finally have 

||Ui-Ui||_ Ul-UO + TL 
At 2 At 2 

(14) 
' ( lflf112 + IIV (lVuoP12Vu)112) + TL. 

By (14) and the regularity hypothesis on uo, i.e., V _(iVuojP-2Vuo) c L2(fQ), we then 
have (9), with C(uo,f) = MaxO_t T IIf(t)JJ2+ I|V _ 

(jVuolp-2Vuo)II2+ TL. The proof is 
completed. 

As a consequence of Lemma 3, we have the following. 
COROLLARY 1. For the sequence {u}uj=o,n in Lemma 3, there exists a constant 

C(uo f) such that llUi 112 ' C(u0of), i = 1, n. 
LEMMA 4. There exists a u* c L2(fQ) for each i, such that 

(Aui, v) = (u, v) for any v E Wo'P(fQ) 

and J1 Aui 11 * = 1j U *11 2, where i = 0, n. Also 11 u* 112 C(u0o f ) for some constant C (uo, f). 
Proof By (7), we have, for i = 1, n, 

(Aug, v) = (Ui-ui, v) +(f, v) for any v EW P(f). 

By (9) we know that Aui is a bounded linear operator on Wo'P(fl) with respect to the 
norm; in fact, JlAuj1 *= 1j((uj-ui_l)/At)+fl2 _C(uo,f). Also Wo'P(Q) is a 

subspace of L2(fQ); in fact, this is a compact imbedding. Therefore by the Hahn-Banach 
theorem [8, p. 111], Aui can be extended to a bounded linear operator Fi on L2(fQ) so 
that jF 1 2* = IjAujll*. Hence, there exists a u e L2(fQ) with II Fi 11 * = 11 u* 112, and Fi(v) = 

(u*, v) for any v E L2(fQ). In particular, (Aui, v) = Fi(v) = (u*, v) for any v c W`P(Q), 
and IIu*112= lIAui|lI_ C(uo,f). 

COROLLARY 2. For the sequence {ui}i=O,n in Lemma 3, there exists a constant 
C(uo,f) such that 

lluill- C(uof) i=1, n. 

Proof By Lemma 1, Corollary 1, and Lemma 4, we have 

a11 ui - uoII P (Aui - Auo, ui - uo) = (u - u*, ui - uo) 
(15) 

_ (|i1 'I12+ 11 U*jj)jjUi - U0112= C(U0,) i = 1 n- 

By the convexity of | jP, we have 

lluilP = 2P-'(Ilui - uollP + Ill"IP), 

which, together with (15), gives the result of this lemma. 
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Now, let {tj}=,,,n and {tk}k=0,n be two uniform partitions of [0, T], 

t-t ti?1-t 
un(t)= atAt i+, + a t t", t ti + , i=0,1, n 

t -tk +tk+1 -t 

Um(t) = Uk+1 

+ 
, tk < t?- tk+l, k=O, 1, m-1, 

Un(0) = U.(0) = U(0), ati = 
iT 

Atk = k 
n m 

Let 

Yn(t) =Ui+1 for ti < t ti+, i = O, 1, 2, n *, n-1 U(0) =UO, 

Yrn(t) =Uk+1 for tk < t?tk+l, k =O, 1, 2, * - *, m-1, um(O) =uo. 

Obviously, 

dt A t ,i 
ti < 

t-ti'+I 

dUm(t) Uk+l Uk 

dt - Atk tk<t?tk?1. 

Remark 1. By Lemma 3, dun(t)/dt, un(t), and Un(t) are uniformly bounded with 
respect to n and t, in L2(Q) norm. In fact, they are all less than or equal to some 
constant C(u0, f ). 

LEMMA 5. For Un(t) and un(t) defined above, we have 

IUn (t)-u (t)j 12 TC(uo,f) n 

Proof. By Lemma 3, we have 

Un ( t) -Un (t) 2 = ( ti)Ui+1 + (ti+ tl t-) Ui ( ti+1-ti) Ui+ 

Ati ~~~~~~2 

-(ti+1-t)(Ui+- ui) 

A tj ~~2 

(Ui+ I - u1) 

c TC(uo,f) 
n 

This proves Lemma 5. 
By the definition of un and (7), we have, for 0? i < n, 0?_ k c m, 

(16) (dt ' U + (Aui+j,v) =(f, v), ti < t '- ti+l, 

and 

(17) (dt I v) +(AUk+l, v) = (fk, v), tk < t Ctk+1 

Let v = un-um, and subtract (16) from (17). We have, for t E (ti, ti+i ] n (tk, tk+i], 

d 
(und nm) u(t)-um(\t) +(Aui+l-AUk+l, U (-t)-Urn(0t)) = (f-fk U(t)-u( t)), 

K dt I 
"n+ k 1 ~ l lk f m 
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which gives 

I d 
(11 u ()Um (t) 112) + (Auj+1 -AUk+l , Un (t) -Um (0) = (fi-fk, Un (t) -Um (t))- 2 dt2 

Hence we get 

2 d (Un(t)Um(t) 11 2) + 
(AUj+ 1-AUk+1, 

Ui+ 
l-Uk+ 1) 

(18) + (Aui+l-AUk+l, Un(t)-Un(t) -(Aui+l-AUk+l, Um(t)YUm(t)) 

(fi -fk, Un (t) -Um( t)) 

for t c (ti+i] n (tk, tk+l], since un(t) = uj+1 and Um(t) = Uk+1. 

Using Lemma 1 and (18), we get 

2 d ( 11 Un ( t)- Um ()12) + a:||uj+1-Uk+l11 P 2idt 

(19) -(Auj+ I- AUk+ , Un (t) - n (0) I 

+ I(AIu+j - Auk+l( Um(t)-Um(t))I + l(fi-fk Un(t) Um(t))I 

By Lemmas 4-5, we have 

I(Auj+j- AUk+l, Un(t) - n(t))I- (IjAuj+1 11 + |lAUk+1 112*) 11Un(t) - n(t)112 

(20) = (IIu*?1U2+ IIuk+1112)IIun(t) - un(t)II2 

(TC(uo, f) 

n 

Similarly, 

(21) I(Auj+j-AUk+l, Um(t)-u (t))lITC(uo f) 
m 

By Lipschitz continuity of f the definition of un(t), and Remark 1, we have 

l(fi -fk, Un(t) - U_(t))l ? LIti - tkl I Un(t) - Um(t) 112 

(22) _?2LTC(u0j) (1?1). 
n m 

Using (19)-(22) we get 

(23) 2 d - (t) ll 2) [2T(I + L)C(u0f)] I+- 

Integrating (23) over [0, T], and noting that un(0) = Um(0), we obtain 

(24) II u (t)-Um(t) l ? 4T2(1 + L)C(u0jf)] I+-) 

Hence by (24) we have proved the following. 
LEMMA 6. {uj is a Cauchy sequence in C(O, T; L2(fQ)), and it converges to an 

element u E C(O, T; L2(fQ)). 

The following lemma is a direct result of Lemmas 5 and 6. 
LEMMA 7. {Uy} converges to u in L'(0, T; Wo'P(fl)), and limn,O (A(uy(t)), v) = 

(A(u(t)), v) for any v E WI'P(fl), uniformly over [0, T]. 
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Proof By using Lemma 4 and the definition of un(t), we have 

a 11 y,(t) -ym (t) 11P C(Au, (t) -Aum (t), y,,(t) -ym (t)) 

II (| *n(t) 112 + ||U*M( t)11|2) || Un (t)-Ym( t)1ll2 

(25) _2C(u0,f)IIYn(t) -Ym(t)II2 

2 2C(uo,f)(jjun (t) - un(t)jj2+ jj un(t) - Um(t)112 

+ IIUm(t)- Ym(t)II2). 

Applying Lemmas 5 and 6 to (25), we see that {Yn(t)} is a Cauchy sequence in W' P(fQ), 
and hence it converges to some limit in Wo'P(ft). But this limit must be the same as 
the limit u of {un(t)}, since by Lemma 5 both {Yn(t)} and {un(t)} converge to the same 
limit in L2(fQ). By Corollary 2 and the definition of un(t) we know that jljn(t)j 1 

C(u0f) and hence IIu(t)|I _ C(uo f), i.e., u E L(0, T; Wo'P(fl)). 
Furthermore, by Lemma 1, we have, for each v E W' P(Q) 

(26) j(A(un(t)), v)-(A(u(t)), v)j <f3(IjYn(t)j + u(t)jn) 2ju(t) - u(t)jj jjv 

C C(UO, f V| ||n (t) - U(t)|| 

Therefore, the second assertion of Lemma 7 follows from (26) since In(t)0-u(t)I 
converges to zero uniformly over [0, T]. Lemma 7 is proved. 

Now, let us prove our main result, Theorem 1. Recall that by (7) and the definition 
of un,, Yn , 

dt" vj+(Aun, v) =(f v) for any vE WIP(e). 

Taking limits, and applying Lemma 7, we have, for any v E W P(Mg 

(27) lim (-, v )+(Au, v)=(f v), n->o dt / 

uniformly in [0, T]. 
For each t E [0, T], by Remark 1, {dun(t)/dt} is a uniformly bounded sequence, 

with respect to t, in the reflexive Banach space L2(Q) and hence has a subsequence 
which converges weakly to an element w(t) E L2(fl). Thus, we have, by (27), that 

(28) (w(t), v)+(Au(t), v)=(f v) for any ve W' PM). 

This w(t) is independent of the subsequence, since for fixed u and f (28) has only 
one solution. Since the weak limit of a uniformly bounded sequence is also uniformly 
bounded [2, p. 193], w E Lc(0, T; L2(fQ)). Therefore, again by the Hahn-Banach 
theorem, (28) can be extended to hold for any v E L2(fQ). 

Let t, t'E [0, T]. Using (28), we have 

(29) (w(t) - w(t'), v) = (Au(t) -Au(t'), v) + (f(t) -f(t'), v), 

which also holds for any v E L2(fl). 
Let v = u(t) - u(t'). By (29), Lemma 1, and the boundedness of w in L2(fQ) norm, 

we get 

a jju(t) - u(t')j1P < (Au(t) -Au(t'), u(t) - u(t')) 

(30) = (w(t) - w(t') -f(t) +f(t'), u(t) - u(t')) 

c(Uo,f)IIu(t) - u(t')jj2. 
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By Lemma 6 and (30), we get 

(31) lim 1 u (t) - u (t')l = . 

Thus, u E C[O, T; Wl"(fQ)]. 
We next show that we C(0, T; L2(fQ)). By Lemma 1, we have 

11 Au (t) -Au (t') 11* --<<:8(1 u (t) 11 + llU(t,)II)p-2IIU(t) - u(t) |- 

Therefore, limt t' 11 Au (t) - Au (t') 11 * = 0, since u E C [O, T; W" P (f)] . 
Since w,fe L'(O, T; L2(fQ)), by the Hahn-Banach theorem and (29), there exist 

u*(t), u*(t') E L2(fQ) so that (w(t) - w(t'), v) = (u*(t) - u*(t'), v)+(f(t) -f(t'), v), for 
any v eL2(fl). And 

(32) lim 11 u*(t) - u*(t') 112 = IIAu(t) - Au(t') II* = 0. 
t --> t' 

Let v = w(t) - w(t') in (29). We get 

w(t)-(t'l2_ = I(Au (t) -Au (t'), w (t) - w (t')) I + I|(f(t) -flt'), w (t) - w(t')) 
-' ( 11 u*(t) - u*(t') 112+ Ilf(t) -f(t') 112) 11 w(t) - w(t') 112, 

which gives 

(33) IIw(t) - w(t')112? (IIu*(t) - u*(t')II2+ lIf(t) -f(t')112). 
Therefore, (33) and the continuity of f imply that we C(0, T; L2(fQ)). 

Let u*( t) = JO w(s) ds + uo. Using Fubini's theorem, we have 

(u.(t) - U*(t),vV = f| (-n_ w) V ds dx = f f ("d n-w) vdxds 

(34) =W v ds 
Jj dt WVU 

Jof [(dtn < - (Au, v)+(Jf v) ds. 

Thus, by (27), limn-O (un(t) - u*(t), v) = 0 for any v E Wo'P(fl), uniformly over [0, T]. 
We have u (t) = u*( t) =JO w(s) ds + uo, since the weak limit is unique. 

We now show that u is differentiable in the sense of Definition 1. In fact, without 
loss of generality, let At> 0. Then, we have 

u(t?+ t) -u(t) - ()2 it+At 2 
( i)(-w(t) 2 1 2 w(s) ds-w(t) 

f[1 ft+At 
(w(x, s) - w(x, t)) ds] dx 

f [ t+At Iw(x, s) - w(x, t)I ds] dx. 

By Jonsen's inequality [8, p. 63], we get 

u(t At) - u(t) 2 t+-t ds) 

-W(t) | (W(X, S) W(x, t))2 dS dX 

1 r t+At 
(35) - ~~~~ J~~ ~~J (W(x, s) _ W(x, t0)2 dX)d 

- t+At 
11 w(s) - w(t) 112ds 

=II w(6) - w(t) 112, where t _ t + At. 



492 DONGMING WEI 

Hence by (35), limAtO ||(U(t + At) - u(t)/At)-W(t)II2 = O, since wE C(O, T; L2(fQ)). 
We get du/dt = w. Finally, by (28) and Definition 1, we get 

(du v)+ (Au, v) =(f,v) for any v c W1'P (Q), in [O, T]. 

This completes the proof of the existence of a solution. 
For uniqueness, let us assume that u and u^ are two solutions to the problem. Then, 

(36) (dX v + (Au, v) = (f, v) for any v E Wo'P(fl), in [0, T], 

and 

(37) (dt, v + (Au, v) = (f, v) for any v E WoP(fQ), in [0, T]. 

Subtracting (37) from (36), we get 

(d -du,v)+(Au-Au,v) =O foranyvE W'P(fl). 

Let v = u - u. Then, we have 

Kd(u -1a)A _A) 
dt ) +(Au-Au,u-,u=O, 

i.e., 

dt (11 U- 2 + (Au-AAu, u-iu)=O. 

Since, by Lemma 1, (Au -Au, u we have 

d 
(|U 

_ 
All 2)-O. dt 2 

IIu(t) - i(t)II is therefore a decreasing function in [0, T], and therefore 

1I u(t) - A(t)12.< IIU(O) - A(O)11I2 = IIUo- Uol4 
2 = 0, 

for all t in [0, T]. This completes the proof of Theorem 1. 

3. L2 error estimates for the fully discrete scheme. Let Sh (fQ) be a conformal finite 

element space of W P(fl) as constructed in [1, (5.3.5), p. 313], and let Hh: W"4(f) -* 

Sh(fl) be defined by IlhU = Em=L1 l(u)N, [6, Vol. iv, pp. 63-64]. Hh is known as the 

finite element interpolation operator; {Nj}i=i,m are the global basis functions for Sh(fQ) 

and {li(u)}ij=,m correspond to the global degrees of freedom. 
A classical theorem on global interpolation error estimates in the finite element 

theory [1] leads immediately to the following. 
LEMMA 8. Suppose that {Th}h is a regular family of triangulation of fQ. We then 

have, for p ' 2, the following interpolation error estimate: 

IIu-HhUII _ ChIU12 foruE W2u (Q), 

where IU 2 is the L2 norm of the second derivatives of u, C is a constant independent of 

u, h is the maximum of the diameters of all the elements in {Th}h, and HhU is the finite 
element interpolation operator. 
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Remark 2. If Hh is the interpolation operator defined in [9, (2.12)], then we have 

I1U -FIhU IIP _ Ch 11 u for u e W' P(Q). 

Again for simplicity, let {tj}j=0,, be a uniform partition of [0, T] and At = T/n. Let 
{Ui}i=0,n be the sequence generated by (7), (8). For each i consider the following 
problem. 

Find Wi c Sh (f), such that 

(A Wi, V) = (Aui, V) for any VeSh (f) n W P (fi), i = 0, n, 
(38) 

0 

Wilan = HhUi Ian 

By Theorem 29.5 of [2], for each i, problem (38) has a unique solution. 
LEMMA 9. II Wi || C(uo,f) i =0, n. 
Proof. In (38), let V= Wi-HIhUo. Then 

(AWi, Wi-HhUo) = (Au, Wi -HhUO), 

i.e., 

{V WiP dx-j IVi?I-2(VW,VHhuo) dx 

= Vilp-2(Vui V Wi) dx- IVUilp-2(VUi VHhUO) dx. 

We hence get 

I vWiIP dx u I | P-IV WiI dx +j IVWiIp-'IVHhUoI dx 

+ fIVuilp-IVIhuoI dx 

rr 1 (p-1)/p r 11/p 
c; J 

IVuiIP dx [LIVWiIP dx 

r . ~~~~(P-1)/p r(P-')/p] 1 /p 
+ {Lf. IV WilP dx + IVuilP dx IVHIuoI" dx]. 

i.e., 

(39) || Wil || 
- 

P cIHhUoI|(I| Wi |P 1+ ui |I) + || ui||P li ijj| 

From (39) and Lemma 3, the conclusion of this lemma can be obtained. 
LEMMA 10. IIuI-hI/I _ C(u,f)(IIui-11hUi I) "(P ), i = 0, n. 

Proof By (38), we have 

(A Wi - Aui, V) = 0 for any Ve Sh(n)fn W!,P(n), i=o, n. 

In particular, 

(40) (AWi-Aui,Ilhui- Wi)=0, i= 0,n. 

By (40), we get 
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By Lemma 1 and (41), we get 

a 11 ui -Wi || P (Aui -A Wi, Ui I-IhUi) 

|lAui -A1WiI|*|ui -fIhUi |3 (II Ui I| + 1V Wi -I) || Ui 1VWil | Ui JhUi |,I 

which gives 

(42) a || ui- Wi 1 P1 c3 (IIuiI + |1|WilI)||21Iui HhUi 11 

By Lemma 9 and (42) we get the result. 
Now, we consider the fully discrete scheme: Let U0 = W0, where W0 is defined 

by (38). Find Ui E Sh (f), such that 

(Ui A 'U_ V +(AU,, V)=(f, V) forany VeSh(fQ)fn Wi'p(), 

Ui <Ian= Wi Ian, i = 1, n. 

LEMMA 11. II(Ui-UUi1/IAt)I12 C(uO,f)- 
Proof. In (43), let i = 1 and V =( U1 - Uo/ t). We then get 

(44) 1A + (A Ul, t (f, I t) 

By Lemma 1 and (44), we have 

f, 
At ||- -AUo, ?kt 

Thus 

(45) U1 U0 2 _l + ( 
U,-U0) 

2t ?k2 t t/ 

since 

(AU0, U1U)A uo, U 
( At )( At) 

Equation (45) is identical to (11) if we replace U1 and U0 by u1 and u0, respectively. 
Hence the rest of the proof of this Lemma can be obtained along the lines of the proof 
of Lemma 3. By (7) and (38), we have 

(46) (U ) Uii, V +(AWj, V)=(f, V) for any VeSh(fQ) n WiO P(f), i= 1, n. 

Subtract (43) from (46), and let V= Wi - Ui. We get 

(47) KUi Ui U ' iU1 /, -U, +(AW -AU,W -U,)=O. 

We extend the fully discrete solution { Ui}i=01n to [0, T] by 

t-t. ti+1 - t U (48) Un (t) = 'Lj ,i1 + 
Utj U(O)= U0, ti<t--ti?l, i=0,19 . 
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similar to the definition of un(t). Then 

KUi Ui Ui_1 Un 

\At dt 

1 dt dg 9 ul (t) -Un (t) 

2d -dt- K dnt)-; dt () n()W-i dt dt t t 

(50) ?(ud(t)ujt)2) d)u(t))U,(t) 

( dt d u (t)-) 

since (AW,-AU,, Wi-Ui)-'O. 
We now estimate the right-hand side of (50): By Lemmas 3 and 11, we have 

(51 ) || dt dt 2| dt ( dt 9 f ) 

K u()du,(t) d,t 
Tu,by (47) and L4) emm ge,frt10 -- i, 11 

( n(52)12) dunUt) Un(t) 

2 C(dntf2 FI(t - ti) - w.til 

duCt dU(to,) I U t) - WI;- (AWi2- AU,W 

Similarly, we have 

|(50() dU(' duin (t))| dU(t (o, Ui U-n (t)11 
K du~~(du)tdUdU(t) 

(53) 2~~~~~~~~~I nt) W 
+ dun(t = dU (t) , i Un ,(t)'U+ i 

dunC(uf)(t-t) U -dU, 

Thus, by (51) and Lem-0,12 
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By (50), (52), and (53), we have, for ti < t-' tj+1, i = O, 1, n - 

2 
d( l un( 

t-Un(t))112) __ C (U o )[A\t + II Ui-W l 2 dtW 12 

(54)r 
'-C(uo,f ) t+ Max Ilui-Wi l2 

Integrating (54) over [0, t], we get 

(55) |un(t) - Un(t)||_C1nt2 +C2 Max lui - WiJ2+? IuO- Vo2, 

where C1 and C2 depend only on C(uo,f). Therefore, we have the following. 
THEOREM 2. Let u(t) be the true solution of problem (1)-(3) obtained in 

Theorem 1, and let Un(t) be the extendedfully discrete solution defined by (48). We then 
have L2 error estimates 

||u(t) - Un(t) 1? C2lAt+ C2 Max |u-WiJ|2? |uo-W'0|. 

Proof: By (24) and (55), we have 

11 U(t) 
_ 

Un (t) 11 2c-( 11)U(t2+ |u()Un (t) 112) 

_ C1At+C2 Max I|Ui-Wi12+2Iuo-W 2- 

Remark 3. By [1, Thm. 5.3.2, p. 317], without assuming "higher regularity" on u, 
we have 

lim II Ui - Wi 112 = 0 for each i, O < i-< n. 

Therefore, this and Theorem 2 imply convergence: 

lim (limI||u(t) -Un(t)112) =0O. 
,&t?- h--O 

Remark 4. If we assume that for each t, u(t) | I W2'p(fQ). Then by Lemma 8, 
Remark 2, Lemma 10, and Theorem 2, we have L2 error estimates 

|u(t) - Un(t)|?2_ ClAtP+ C2 Max W0-112|2? |uo- 1V02 

'-CI?\t + C2 Max (1 | ui - Hhuhi ) 
1 I + (| uO - HhuOl )2/(p1) 

_ C1At+ C2 (Max uiI2) hl(P- ')+ C31uO12h 2/(P ) 
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