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Abstract

In this paper, it is shown that D. Shelupsky’s generalized sine func-
tion, and various general sine functions developed by P. Drábek, R.
Manásevich and M. Ôtani, P. Lindqvist, including the generalized Ja-
cobi elliptic sine function of S. Takeuchi can be defined by systems of
first order nonlinear ordinary differential equations with initial condi-
tions. The structure of the system of differential equations is shown to
be related to the Hamilton System in Lagrangian Mechanics. Numer-
ical solutions of the ODE systems are solved to demonstrate the sine
functions graphically. It is also demonstrated that the some of the gen-
eralized sine functions can be used to obtain analytic solutions to the
equation of a nonlinear spring-mass system.

Keywords: generalized sine, Hamilton system, nonlinear spring, vibra-
tion, analytic solution

1 Introduction

In this work, we show that the various generalized trigonometric sine func-
tions found in the work of D. Shelupsky, P. Drábek and R. Manásevich and M.
Ôtani, P. Lindqvist, and the ones including the generalized Jacobi elliptic sine
function of S. Takeuchi all can be defined by systems of first order ordinary
differential equations (ODE’s) subject to initial conditions. The connections
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between these generalized sine functions and their associated generalized con-
stant Pi are demonstrated in section II. The connections to the ODE’s are
demonstrated in Section III. Linking the ODE’s to the Hamilton System in
Lagrangian Mechanics with an application for solutions to a nonlinear spring-
mass equation are demonstrated in IV. The ODE’s allow us to numerically
calculate the various sine functions with a uniform approach and numerical
presentations of the sine functions are presented in section V.

2 Connections between the generalized sine

functions

The traditional Euclidean sine and cosine functions can be defined as the
solution of a first order differential equation system with initial condition:{

y′ = x, y(0) = 0
x′ = −y, x(0) = 1

which is equivalent to the following system of second order equations:{
y′′ + y = 0, y(0) = 0, y′(0) = 1
x′′ + x = 0, x(0) = 1, x′(0) = 0

Since

yy′ + xx′ = yx+ (−xy) = 0

we have

d

dt
(
1

2
x2 +

1

2
y2) = 0

and

x2 + y2 = 1

that is the Pythagorean identity

| sin t|2 + | cos t|2 = 1

where sin t = y(t) and cos t = x(t). The sine and cosine functions can also be
defined by

sin−1t
.
=

{ ∫ t
0

1√
1−s2ds, 0 ≤ t ≤ 1

−
∫ −t
0

1√
1−s2ds,−1 ≤ t ≤ 0
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and the Euclidean number

π
.
= 2sin−11 = 2

∫ 1

0

1√
1− s2

ds

equals the bounded area of the unit circle enclosed by x2 + y2 = 1. David
Shelupsky’s definition of a generalized sine function [1] is based on the differ-
ential equation approach. First, let

ϕ(ε) = |ε|p−2ε, p ∈ R+

be the power-law function, then let sinpt = y(t) and cospt = x(t), where x(t)
and y(t) are the solutions to the nonlinear initial value problem:{

y′ = ϕ(x), y(0) = 0
x′ = −ϕ(y), x(0) = 1

Like the linear counterpart, we have{
ϕ(y)y′ = ϕ(y)ϕ(x)
ϕ(x)x′ = −ϕ(y)ϕ(x)

which gives
ϕ(y)y′ + ϕ(x)x′ = 0

and
|x(t)|p + |y(t)|p = 1

The above equation is the generalized Pythagorean identity:

|sinp(t)|p + |cosp(t)|p = 1

The system is also equivalent to the following two second order ODE’s with
boundary conditions:{

[ϕ−1(y′)]′ + ϕ(y) = 0, y(0) = 0, y′(0) = 1
[ϕ−1(x′)]′ + ϕ(x) = 0, x(0) = 1, y′(0) = 0

Similar to the case when p = 2, the inverse sine function has the following
integral form:

sin−1
p t

.
=


∫ t
0

1
p
√

(1−sp)p−1
ds, 0 ≤ t ≤ 1

−
∫ −t
0

1
p
√

(1−sp)p−1
ds,−1 ≤ t ≤ 0

and
| sin t|p + | cos t|p = 1
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A generalized Pi is defined by David Shelupsky [1] is

πp
.
= 2

∫ 1

0

1

p

√
(1− sp)p−1

ds

which is shown to be the bounded area enclosed by the graph of |x|p+ |y|p = 1,
and it has the following interesting property

Γ(1
2
) = 2

3
4

√
π4

√
1

2
π2, Γ(1

8
) = 2

7
8

√√√√
2π8

√
π4

√
1

2
π2

Several values of the generalized Pi are given in Table 1: For more numerical
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Figure 1: Plots for |x|p + |y|p = 1 with different p.

Table 1: Values of π

π1 π2 π3
2.000 3.1415 3.595

values of πp see [2]. It is also interesting to look at the graphs of |x|p+ |y|p = 1
for various values of p in Fig. 1.
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Figure 2: Plots for |x|p + |y|q = 1 with different p and q.
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A similar version of the generalized sine function is developed by M. Del
Pino and M. Elgueta and R. Manasevich by the following:

sin−1
p t

.
=


∫ t
0

1
p
√

1− sp

p−1

ds, 0 ≤ t ≤ 1

−
∫ −t
0

1
p
√

1− sp

p−1

ds,−1 ≤ t ≤ 0

for which the generalized Pi is defined by

πp
.
= 2

∫ (p−1)1/p

0

1

p

√
1− sp

p−1

ds.

This sine function is used for the solution of the following eigenvalue value
problem [3]. (

|u′|p−2u′
)′
+ λ|u|p−2u = 0

satisfying

u(0) = 0, u′(0) = α

A widely cited version of generalized sine is defined by Peter Lindqvist [4], in
which the inverse sine is defined by

sin−1
p t

.
=

{ ∫ t
0

1
p√1−spds, 0 ≤ t ≤ 1

−
∫ −t
0

1
p√1−spds,−1 ≤ t ≤ 0

for which the generalized Pi is defined by

πp
.
= 2

∫ 1

0

1
p
√
1− sp

ds.

It is interesting that we also have | sin t|p + | cos t|p = 1, and u = sinp t is the
unique solution to the boundary value problem:(

|u′|p−2u′
)′
+ (p− 1)|u|p−2u = 0

satisfying

u(0) = 0, u′(0) = 1

The above sine functions are depending upon one parameter p. The defi-
nition of a two parameter generalized sine by Lindqvist [5], and Drábek and
Manásevich [6] is given by the integral of the inverse sine:

sin−1
pq (t)

.
=

{ ∫ t
o

ds
p√1−sq , 0 ≤ t ≤ 1

−
∫ −t
o

ds
p√1−sq ,−1 ≤ t ≤ 0
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The corresponding generalized Pi is defined by

πpq = 2sin−1
pq (1) =

2

q
B(

1

q
, 1− 1

p
)

where B(1
q
, 1 − 1

p
) is the Euler Beta function evaluated at (1

q
, 1 − 1

p
) (see also

the work of [7]). It is proved by Shingo Takeuchi [8] that for p > 1, q >
1 this generalized sine function is the solution of the following second-order
differential equation

p

p− 1

(
|u′|p−2u′

)′
+ q|u|q−2u = 0

satisfying
u(0) = 0, u′(0) = 1

and that the identity
|sinpq(t)|p + |cospq(t)|q = 1

holds, in which

cospq(t) = (1− sinqpq(t))
1
p

This sine function is more general since both the previous mentioned ones
are special cases of this one. It is widely used in the literature for studying
the eigenvalues and eigenfunctions associated with the p-Laplacian operator,
see e.g., [4, 5, 9, 10]. Since the list of references for this type of work is long,
for the interest of brevity we only list a few here. This definition is consistent
with the integral definition found in the work of [11, 12].

We now demonstrate that the above generalized sine functions and the
elliptic Jacobi sine functions can be treated as special cases in the unifying
framework of a single system of first order differential equations with an ini-
tial condition and to show that under this frame work, the above mentioned
various generalized sine functions are naturally connected to the solutions of
free vibrations systems in nonlinear Hamiltonian Mechanics.

3 The general system of equations that defines

sine functions

The framework for defining generalized sine functions and for calculating their
analytic forms is motivated by the structure of the Hamilton equations in
Lagrangian Mechanics. For this purpose, the following more general system of
first order ODE with initial condition is considered:{

y′ = ϕ(x), y(0) = 0
x′ = −ψ(y), x(0) = 1

(1)
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where ϕ and ψ are suitable functions satisfying appropriate conditions to guar-
antee the existence and uniqueness of the solution of Eq. (1). Assuming that
ϕ and ψ are integrable and denote the Φ and Ψ anti-derivatives of them re-
spectively satisfying Φ(0) = Ψ(0) = 0. Since

ψ(y)y′ + ϕ(x)x′ = 0

we have

Ψ(y(t)) + Φ(x(t)) = Φ(1)

and

Ψ(y(t)) + Φ(ϕ−1(y′(t))) = Φ(ϕ−1(1))

Symbolically, the solution y(t) of Eq. (1) can be defined in terms of an integral
equation ∫ y(t)

y(0)

dy

ϕ[Φ−1(Φ(ϕ−1(1))−Ψ(y)]
= t

provided that the appropriate definitions of Φ−1 and ϕ−1 are available.
If the integral function

f(y) =

∫ y

0

dτ

ϕ[Φ−1(Φ(ϕ−1(1))−Ψ(τ))]

is well-defined for

0 ≤ ψ(y) ≤ Φ(ϕ−1(1))

then the generalized sine function sinϕ,ψt can be defined as the solution

y(t) = f−1(t), for 0 ≤ t ≤ πϕ,ψ
2

where

πϕ,ψ
.
=

∫ 1

0

dy

ϕ[Φ−1(Φ(ϕ−1(1))−Ψ(y)]

is the corresponding generalized Pi. The standard technique of odd-extension
of functions on a finite domain to periodic functions on the whole real line
can be used to extend this generalized sine as an odd periodic function of
2πϕ,ψ. The generalized cosine is defined as cosϕ,ψt = x(t), and the following
generalized Pythagorean identity

Ψ(sinϕ,ψt) + Φ(cosϕ,ψt) = Φ(ϕ−1(1))

holds. In particular, if

ϕ(ε) = p|ε|p−2ε, ψ(ε) = q|ε|q−2ε, p, q ∈ R+
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by defining

sinp,qt = sinϕ,ψt, cosp,qt = cosϕ,ψt

the identity

|sinp,q(t)|p + |cosp,q(t)|q = 1

follows. Also, we have

πp,q = 2

∫ 1

0

1
p
√
1− sq

ds =
2

q
B(

1

q
, 1− 1

p
)

Especially, for p = q, sinp,p(t) ≡ sinp(t) given by the definition of David Shelup-
sky [1]. In another case, if

ϕ(ε) = p

√
p− 1

p
|ε|

2−p
p−1 ε, ψ(ε) = q|ε|q−2ε, p > 1, q > 1

then

sinϕ,ψ(t) ≡ sinpq(t)

which is the sine function given by the definition of Drábek and Manásevich
[6], and M. Ôtani [7]. Figure 2 shows graphs of |y(t)|p+ |x(t)|q = 1 for various
values of p, q, and πpq is the area of the bounded region enclosed.

As the third special case, let

ψ(ε) =
q(p− 1)

p
(1 + kq(1− 2|ε|q)|ε|q−2ε, p > 1, q > 1

and

ϕ(ε) = |ε|p−2ε, p > 1

Then we have

sinϕ,ψ(t) = snpq(t, k)

where snpq(t, k) is well-known generalized Jacobi elliptic sine function. It is
interesting to note that the connection between snpq(t, k) and sinpq(t) is pre-
sented by [8] as

sinϕ,ψ(t) ≡ sinpq(ampq(t, k))

where the amplitude function ampq(t, k) is defined by

t =

∫ ampq(t,k)

0

1
p
√
1− kqsinpq

q(s)
ds
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4 Applications of the generalized sine func-

tions

In fact, the symbolic definition presented by Eq. (1) is connected to the Hamil-
tonian system of Lagrangian Mechanics. The well-known Hamilton system is
given by {

dp
dt

= −∂H(p,q,t)
∂q

dq
dt

= ∂H(p,q,t)
∂p

(2)

where H = T + V is the Hamilton energy function, T is the kinetic energy,
and V is the potential energy. Since

∂H(p, q, t)

∂p

dp

dt
+
∂H(p, q, t)

∂q

dq

dt
= 0

We have H(p, q, t) = C, which is the equation of conservation of energy. It is
obvious that Eq. (2) is an important case of Eq. (1).

As an example of applications of the generalized sine functions, consider
the following equation of motion for a nonlinear spring-mass system:

MẌ +K|X|n−1X = 0

This system is subject to the following generalized Hooke’s law:

F = −K|X|n−1X,n > 0

where F is the restoring force, M is the mass, K is the Hooke’s constant, n
is the work-hardening index in the theory of plastic mechanics, and X is the
displacement of the mass of the equilibrium position. The dot derivative Ẋ
stands for the time derivative of X or the velocity of the mass. The Hamilton
function for this example is

H(p, q) =
p2

2
+ V (q) =

p2

2
+

K|q|n+1

(n+ 1)M

where p = Ẋ and q = X. The corresponding Hamilton system is{
dx
dt

= −K|y|n−1y
M

dy
dt

= x

where y = q, and x = p. For the initial condition y(0) = 0, x(0) = 1, we have
the following solution {

y(t) = sinϕ,ψ(t)
x(t) = cosϕ,ψ(t)
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where ϕ(ε) = |ε|n−1ε
K

and ψ(ε) = ε
M
. The identity

K|sinϕ,ψ(t)|n+1

M(n+ 1)
+

|cosϕ,ψ(t)|2

2
=

1

2

is satisfied. The specific expressions of the solution of the above system with
initial condition y(0) = 0, x(0) = y′(0) = Ẋ can be derived by solving

|ẏ|2

2
+

K|y|n+1

(n+ 1)M
=

|ẏ(0)|2

2

From

dy

dt
= ±

√
[ẏ(0)]2 − 2K

M(n+ 1)
|y|n+1

we get
dy√

[ẏ(0)]2 − 2K
M(n+1)

|y|n+1
= ±dt

Let

s = n+1

√
2K

M(n+ 1)[ẏ(0)]2
y

then
ds√

1− sn+1
= ±|ẏ(0)| n+1

√
2K

M(n+ 1)[ẏ(0)]2
dt

and we have ∫ y(t)
A

0

ds√
1− sn+1

= ±ωt

where

1

A
= n+1

√
2K

(n+ 1)M |ẏ(0)|2
, ω = n+1

√
2K|ẏ(0)|n−1

(n+ 1)M

Therefore, since y = X, the solution of the vibration system can be expressed
in terms of the generalized sine defined by Eq. (1)

X(t) = Asinϕ,ψ(ωt)

where

ϕ(ε) = ε, ψ(ε) =
K|ε|q−2ε

M
,A =

n+1

√
(n+ 1)M |Ẋ(0)|2

2K
,ω =

n+1

√
2K|Ẋ(0)|n−1

(n+ 1)M
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The generalized Euclidean number Pi in this case is given by

πϕ,ψ = 2 sin−1
ϕ,ψ

(1) = 2

∫ 1

0

ds√
1− sn+1

Then the frequency is

f =
ω

2πϕ,ψ

When n = 1, this solution reduces to the classical solution

X(t) = |Ẋ(0)|
√
M

K
sin

(√
K

M
t

)
for the linear spring-mass equation MẌ + KX = 0;X(0) = 0. It can be
observed that for n ̸= 1, the frequency of the novel generalized harmonic
motion of this nonlinear string-mass system f =

2πϕ,ψ
ω

also depends on the
initial velocity of the mass, demonstrating that, even in this simplest model,
there is a striking difference between linear and nonlinear mechanical vibration
systems. To express the solution in terms of the generalized sine of Drábek
and Manásevich and Ôtani, take p = 2, and q = n+ 1, then we have

X(t) = Asin2(n+1)(ωt)

Partial analytic solutions to this problem for n = odd integer can be found
in the classical book by S. Timoshenko and D. H. Young and W. Weaver, JR
[13]. Our result provides this problem an analytic solution for any legitimate
values of n.

Remark: For various trigonometric identities, integrals, and connections
to the elementary functions by the David Shelupsky generalized sine function
sinpt, see [14]. For various generalized trigonometric identities and graphic rep-
resentations of the generalized sine (sinpqt and cospqt) of Drábek and Manásevich

and M. Ôtani, and the widely cited contributions by [4, 5]. The reader can
consult the comprehensive book [11] and their work, e.g., [12]. The paper by
P. J. Bushell and D. E. Edmunds [14], provides many useful properties of the
sinpqt function. For important applications, see [15].

Some numerical results are provided here. The solutions for the metals
in Table 2 are given in Fig. 3, where M = 10. The plots of frequency and
amplitude vs. initial velocity Ẋ(0) respectively for different n are given in Fig.
4.

5 Numerical representations of the general-

ized sine functions

In this section, numerical solutions of system Eq. (1) are calculated for:
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Table 2: K and n for different metals

Metal K (MPa) n
Aluminum 1100-O 180 0.20
Aluminum 7075-O 400 0.17

Annealed steel low-carbon 530 0.26
Annealed brass 70-30 895 0.49

Annealed bronze (phosphor) 720 0.46
Annealed copper 315 0.54
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Figure 3: The plot of the y(t) for different metals.
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Figure 4: The frequency and amplitude vs. the initial velocity ẏ(0), where K = 1

and M = 1 are assumed.
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Case 1, the David Shelupsky’s sine and cosine function with

ϕ(ε) = ψ(ε) = |ε|p−2ε, p > 0

the results are given in Fig. 5;
Case 2, P. Drábek and R. Manásevich’s sine and cosine function with

ϕ(ε) = p|ε|p−2ε, ψ(ε) = q|ε|q−2ε, p, q > 0

the results are given in Fig. 6;
Case 3, P. Drábek and R. Manásevich’s variation of sine

ϕ(ε) = p

√
p− 1

p
|ε|

2−p
p−1 ε, ψ(ε) = q|ε|q−2ε, andp > 1, q > 1

the results are given in Fig. 7;
Case 4, S. Takeuchi’s Jacobi elliptic sine and cosine function with

ϕ(ε) = |ε|p−2ε, p > 1

ψ(ε) =
q(p− 1)

p
(1 + kq(1− 2|ε|q)|ε|q−2ε, p > 1, q > 1

the results are given in Fig. 8. The numerical solutions are obtained by solving
numerically the initial value problems for ODE’s, which can be readily done
by many ODE solvers, such as the Matlab with the function “ode45” based on
an explicit Runge-Kutta(4, 5) formula [16].
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Figure 5: The results of Shelupsky’s sine function (Case 1).

6 Conclusions

We have shown the connections between several important generalized sine
functions developed by several authors from different perspectives can be
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Figure 6: The results of P. Drábek and R. Manásevich’s sine function (Case 2).
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Figure 7: The results of P. Drábek and R. Manásevich’s variation of sine function
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Figure 8: The results of Takeuchi’s Jacobi elliptic sine function (Case 4).
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casted in the framework of the Hamilton system of first order ODE’s in La-
grange Mechanics. This ODE’s can be solved by a uniform approach to nu-
merically evaluate the sine functions. We also provide an analytic solution to a
nonlinear spring-mass system in terms of one of the generalized sine functions,
demonstrating the applicability of these sine functions in solving nonlinear
vibration problems in engineering.
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