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Abstract. In this paper we prove the global solvability of a class of fourth-order 
nonlinear boundary value problems that govern the deformation of a Hollomon’s 
power-law plastic beam subject to an axial compression and nonlinear lateral 
constrains.  For certain ranges of the acting axial compression force, the 
solvability of the equations follows from the monotonicity of the fourth order 
nonlinear differential operator. Beyond these ranges the monotonicity of the 
operator is lost. It is shown that, in this case, the global solvability may be 
generated by the lower order nonlinear terms of the equations for a certain type of 
constrains. 
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1. INTRODUCTION 
 
The Euler buckling load of simply supported straight elastic beam subject to 

an end axial compressive load P  can be modeled by the equation: 
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0,  0 ,EIv Pv x L′′′′ ′′+ = < <                     (1) 
with boundary conditions: 

(0) ( ) (0) ( ) 0,v v L v v L′′ ′′= = = =                                                                              (2)                      
where L  is the length of the beam, E the Young’s modulus, and I the area 
moment of inertia.  Integrating (1) two twice gives: 

1 2 .EIv Pv c c x′′ + = +  
Applying boundary conditions (2), we get: 1 2 0c c= =  
The boundary value problem (1), (2), then reduces to: 

0EIv Pv′′ + = ,                                                                                                        (3) 
with the boundary conditions:  

(0) ( ) 0v v L= = .                                                                                                     (4) 

The general solution of (3) is: ( ) cos sin ,P Pv x A x B x
EI EI

= +  

where A  and B are arbitrary constants to be determined so that the conditions (4) 
are satisfied. This gives the following system of two equations in A  and :B  

0 cos 0 sin 0,

0 cos sin ,

P PA B
EI EI
P PA L B L
EI EI

⎧
= +⎪⎪

⎨
⎪ = +⎪⎩

 

whose non-zero solutions are given by:  

0, 0,   , 1,2,3...PA B L k k
EI

π= ≠ = =  ,  

corresponding to the following sequence of solutions of (1): 
2

( ) sin ,  , 1, 2,3,...k k
k x kv x B P EI k

L L
π π⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

Therefore, the boundary value problem (1), (2) can be thought of as the following 
eigenvalue problem: 

0,           0 ,
(0) ( ) (0) ( ) 0,
v v x L
v v L v v L

λ′′′′ ′′+ = < <⎧
⎨ ′′ ′′= = = =⎩                         (5) 

 with eigenpairs given by: 

 2( ) sin ,  , 1,2,3,...k k
k xv x k k

L
π λ π= = =（ ）  

1( )v x is called the first eigenfunction or the first buckling mode and 1
2critP EI

L
λ

=  

is the well-known Euler critical buckling load, sometimes also called the onset 
buckling load, see [11] for details. 
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The above classical Euler buckling load is derived based on the classical 
Hooke’s law: Eσ ε=  and the assumption that during the deformation, the cross-
sections of the column remains perpendicular to the center line. Modern advances 
in manufacturing of metal made available in the markets the following high 
strength materials satisfying a more general constitutive equation: 

1| | ,nKσ ε ε−=   
which is known as the Hollomon’s power-law. Here, σ stands for the true stress  
ε  true strain, n  the strain hardening index, and K the strength coefficient. 
The differential equation for the Hollomon’s power-law beam subjected to an end 
axial compressive load P can be written as: 

1( | | ) 0,  0 ,n
nKI v v Pv x L−′′ ′′ ′′ ′′+ = < <              (6) 

1where  is the first moment of area inertia.n
n

A

I y dydz+= ∫∫  

We consider here the solvability of (6) with one of the pin-pin (PP), the pin-slide 
(PS) or the slide-slide (SS) boundary conditions: 
(1) (0) (1) (0) (1) 0    (PP Conditions),
(2) (0) (1) (0) (1) 0 (PS Conditions),
(3) (0) (1) (0) (1) 0  (SS Conditions),

v v v v
v v v v
v v v v

′′ ′′= = = =
′ ′′′ ′′= = = =

′′′ ′′′= = = =
                                           (7)                                     

If nKI  in (6) is constant, then equations (6), (7) can be written as the following 
eigenvalue problems: 

1(| | ) ,  0 1,
(1)   (0) (1) (0) (1) 0  (PP Conditions),
(2) (0) (1) (0) (1) 0 (PS Conditions),
(3) (0) (1) (0) (1) 0 (SS Conditions),

nv v v x
v v v v

v v v v
v v v v

λ−′′ ′′ ′′ ′′⎧ − = < <
⎪ ′′ ′′= = = =⎪
⎨ ′ ′′′ ′′= = = =⎪
⎪ ′′′ ′′′= = = =⎩

                                (8)  

where: 
2

.
n

n

PL
KI

λ =  

Table 1.1below gives some typical values for the parameters and  (see [7].)K n  
Material Strength Coefficient K(Mpa) Hardening Index n 
Aluminum 1100-O 180 0.20 
Brass 70-30, annealed 895 0.49 
Steel, low-carbon, annealed 530 0.26 
Steel, 17-4 P-H annealed 1200 0.05 
410 stainless steel, annealed 960 0.10 
Table 1.1 
In this case when nKI is constant, Theorem 5.3 of [11] can be applied to imply 
that for each and K n , (8) has the following solutions corresponding to the three 
boundary conditions: 
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1, 2

2
1

2

(1 ) For the  P P  boundary condition : 
1T he  first e igenfunction  is v ( ) sin ( ),  [0 ,1],  

2co rrespond ing to  the  first e igenvalue  
1

2and  the  c ritica l buck ling load  ( )
1

n
n n

n

n

n n
cr

Kx x x
L
n

n
n K IP n

n

π
π

λ π

π

= ∈

=
+
⎞⎛= ⎜ ⎟+⎝ ⎠ 2 ,nL

 

1, 2

(2) For the PS boundary condition: 
4The first eigenfunction is v ( ) sin ( (1 )),  [0,1],  

2
n

n n
n

x x xπα
π

= − − ∈
 

1
2

2corresponding to the critical buckling load ( ) ,
2( 1)

n
n

cr nn

n KIP n
n L
α π

−

=
+

 

1

2

1, 1

2

(3) For the SS boundary condition: 

1 1 1 1( ) 2 1 sin ( ( )) ,  0
2 2 2

The first eigenfunction is v ( ) , 
1 1 1 1( ) 2 1 sin ( ( )) ,  1

2 2 2

corresponding to the critical

n
n n

n
n

n
n n

n

n x x x
n

x
n x x x

n

π
π

π
π

⎧ + ⎡ ⎤− − + ≤ ≤⎪ ⎢ ⎥⎣ ⎦⎪= ⎨
+ ⎡ ⎤⎪ − − − < ≤⎢ ⎥⎪ ⎣ ⎦⎩

1

2
2

2 load ( ) ,  (0). 
1

.

n
n

cr nn

KI nP n v
L n

π α⎞⎛ ′′= =⎜ ⎟+⎝ ⎠

 

In the above, sin ( )n t is a generalized sine function and 1,
1 2n

nB
n

π ⎞⎛= ⎜ ⎟+⎝ ⎠
is a 

generalized Pi, where 
1

1 1

0

( , ) (1 )x yB x y t t dt− −= −∫ .  See, [3], [10], and [13] for 

definitions and properties of the generalized sine function.  If 
2

21,  sin  sin ,  and ,  (1)n n cr
EIn x x P

L
ππ π= = = =  , and for 1n ≠ the corresponding 

onset buckling load is given by ( )crP n . 
This paper is concerned with the global existence and uniqueness of solutions to 
the following boundary value problems: 
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1(| | ) ( , , , ) ( ),  0 1
(1) (0) (1) (0) (1) 0  (PP Conditions),
(2) (0) (1) (0) (1) 0 (PS Conditions),
(3) (0) (1) (0) (1) 0  (SS Conditions).

nv v v kv G x v v v f x x
v v v v
v v v v
v v v v

λ−′′ ′′ ′′ ′′ ′ ′′⎧ + + + = < <
⎪ ′′ ′′= = = =⎪
⎨ ′ ′′′ ′′= = = =⎪
⎪ ′′′ ′′′= = = =⎩

                                     
(9) 

These boundary value problems model the deflection of a power-law column 
subject to axial load and lateral force, with nonlinear foundation constrain. Our 
objectives are to extend the results established in [1] for the n=1 case. The main 
conclusion of our result here is to show that the linear lateral constrain in (9) 
cause a shift of the critical buckling load. 
In the following sections of this paper, we only consider the global existence and 
uniqueness of solution for the differential equations in (9) for the “PP Condition.”  
Similar results can be established for the other boundary conditions however, for 
simplicity and brevity, we omit the proofs. 
 
 
2. ASSUMPTIONS AND PRELIMINARY RESULTS 
 
Throughout the rest of this paper we will use the following set notation: 

{ }2, 1
0 (0,1) | (0) (1) 0 . nv W v v+ ′′ ′′= ∈ = =H  

It can be easily seen that  is a Banach space.H   
We will make the following assumptions: 

 
1

1( ) (0,1)nH f L +∈  
2( ) ( , , , ) ( ) ( , , , ),H G x v v v g v h x v v v′ ′′ ′ ′′= +     

1

where ( ) and ( , , , ) are continous, and ( , , , ) ( , )
defines a map :  (0,1) (0,1) which is continuous.n

g v h x v v v h x v v v H x v
H L +

′ ′′ ′ ′′ =

× →H  
1

3 0
( ) [ ( , , , ) ( , , , )]( ) 0,  for all , .H G x v v v G x u u u v u dx v u′ ′′ ′ ′′− − ≥ ∈∫ H.. . . .

 
4( ) Additionally,  we assume that :H

 
 
A. There exists 1p > such that ( ) ( )pg rx r g x= for 

 
, ,  with 0.r x R r∈ >

 
 B. For any v∈H  and 

1 1

0 0
( ) 0,  and ( ) 0  v 0;  g v vdx g v vdx iff≥ = =∫ ∫  

 C. 
1

0
( , , , ) 0, .h x v v v vdx v′ ′′ ≥ ∀ ∈∫ H  

The proof of our main result of the next section consists of verifying the 
conditions of a corollary of Leray-Schauder Fixed Point Theorem which we state 
here as the following lemma. 
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Lemma2.1. Let B be a Banach space and :K B B→  be a compact operator. 
Suppose that there exists a priori bound 0M >  such that every solution of 

0,  for [0,1],v tKv t− = ∈ satisfies || || .v M≤  Then K  has a fixed point in B .  
Let us define the operator: 

12,2, 1: (0,1) (0,1)                                                                               (10)
nn nA W W
+−+ →

by defining
12,2, 1

0 0, for (0,1),  ( ) (0,1) by:
nn nv W A v W
+−+∈ ∈  

1 1 2, 1
00

( ), | | ,              (0,1).                                        (11)n nA v u v v u dx u W− +′′ ′′ ′′< >= ∀ ∈∫
It is known that 2, 1( ) : (0,1)nA v W R+ →  is a monotone operator satisfying the 
estimate (see, e.g. [8] and [9] for details): 

2 2 2 1 2, 1
2, 1 2, 1 2, 1 0

( ) ( ),|| || (|| || || || ) , , (0,1).  (12)n n
n n n

A v A w v wv w v w v w W
n

− +
+ + +

< − − >
− ≤ + ∀ ∈

 Therefore, for every 
12, (0,1)

n
nh W

+−∈  there exists a unique solution
2, 1

0 (0,1)nu W +∈  to the operator equation Au h= .   

Let 
12,1 2, 1: (0,1) (0,1)

n nnA W W
+−− +→ denote the inverse of A .   

Now, we formulate the boundary value problem (9) as an operator equation on 
2, 1

0 (0,1)nB W +≡  by defining: 
1 2, 1[ ( , , , ) ],  for (0,1),nh Kv A v kv G x v v v f v Wλ− +′′ ′ ′′= ≡ − − − + ∈   

Provided that: 
12,( , , , ) (0,1)

n
nv kv G x v v v f Wλ

+−′′ ′ ′′− − − + ∈  for 2, 1(0,1),nv W +∈  
which is valid since the domain of 1A− is 

12, (0,1).
n

nW
+−    

Let 2, 1
0 (0,1)nw W +∈ , then by Holder’s inequality and the competence of the 

imbedding 
12, 1(0,1) (0,1),

n
nnW L
++ ⊆  we have: 

1 1

1 1 1 1 2, 1

1

0
| , ( ( ) ( ) ( , ( ), ( ), ( )) ( )) ( ) |

|| ( ) ( ) ( ) ( , ( ), ( ), ( )) || || ||

[|| || || || || ( ) || || ( , , , ) || ] || || .

n n
n

n n n n n

L L

L L L L W

Kv w v x kv x G x v x v x v x f x w x dx

f x v x kv x G x v x v x v x w

C f v g v h x v v v w

λ

λ

λ

+ +

+ + + + +

′′ ′ ′′< >= − − − +

′′ ′ ′′≤ − − −

′′ ′ ′′≤ + + +

∫

 
The term 1( ) n

nL
g v +  is bounded since g is continuous, [0,1],  v C∈

1
0 1
max | ( ) | || || nLx

v x C v +
≤ ≤

′′≤ (by the Sobolev imbedding theorem) and is continuous.h  

It follows that: 
2, 1

2, 1| , | || || , where the constant depends on the norm of (0,1).n
n

W
Kv w C w v W+

+< >≤ ∈
 
We now show that :K B B→ is a compact operator.  Let 1,  and h B v A h−∈ = , 
than ( , ) ( , )Av v h v= and 1( ) ,  where ( ) | |nv h v v vφ φ −′′ ′′ = = .  
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Lemma 2.2 The operator :K B B→  is a compact operator. 
Proof:  Suppose that{ }

1
| 1, 2,...  and max ||v || Mk kk

v k B
≤ ≤∞

= ⊂ ≤ , where 
1

2 11 ( ) 1

0
0

|| || | |
n

i n
k k

i
v v

+
+

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑∫ .     Let k kh Kv= , then We will show that the sequence 

{ }| 1, 2,...kh k =  is bounded and equicontinuous. The compactness of K then 
follows from the Arzelà–Ascoli theorem. ( , , , ) .k k k k k kAh v kv G x v v v fλ ′′ ′ ′′= − − − +  

1
, ( ) where ( , , , ) n

k k k k k k k kh w w v kv G x v v v f Lφ λ +′′ ′′ ′′ ′ ′′= = − − − + ∈ .   So  
1 11( ) ( ( )),  and ( ) | ( ) | ( )n

k k k k kh x w x h x w x w xφ −−′′ ′′′ ′= =
1

0 0 0 0
( ) ( ( )) ( ) ( )

x t t

k k k kz x h x w d dt w d dtφ τ τ τ τ′′≡ = −∫ ∫ ∫ ∫  and 

1

1

0
| ( ) | 2 | ( ) | 2 || || nk k k L
z x w x dx w +≤ ≤∫  

0
( ) ( )

x

k kz x w t dt′ = ∫ and 1

1

0
| ( ) | | ( ) | || || nk k k L
z x w t dt w +
′ ≤ ≤∫  

So  
1 11( ) ( ( )),   ( ) | ( ) | ( )n

k k k k kh x z x h x z x z xφ −−′′ ′′′ ′= = , and we have 
1

1 1
1| ( ) | (2 || || ) || ||n

n nk k kL L
h x w w C+ +

−′′′ ≤ ≤  
Therefore, the Arzelà–Ascoli theorem applies and the operator K is compact. 
With the notation: 

1 2, 1
0( ) ( ) , with ( ) | | and ( ) { | ( ) (0,1)},       (13)n nL v v v v v D L v v Wφ φ φ− +′′′ ′′ ′′ ′′ ′′ ′′≡ ≡ = ∈ ∈H

 
we note that:  

1 2, 1
00

( ), ( ) ,              (0,1).                                               (14)nA v u L v udx u W +< >= ∀ ∈∫
 
By Lemma 2.1, 2.2, and the result in [13], we have just completed the following 
proposition about the operator L: 
Proposition 2.1 

(A) L , as an operator on 1(0,1)nL + , is densely defined; 

(B)  1 2 1
2 2 1

2

1|| || || || || ||  for v ( );
2n n

n
L L L

n

nv v v D L
nπ+ +

+⎛ ⎞+′ ′′≤ ≤ ∈⎜ ⎟
⎝ ⎠

 

(C)  For ( ),  ( ) 0 iff 0;y D L L y y∈ = =  

(D)  there exists a unique bounded operator 
1

: (0,1) ( )
n
nL D Lψ
+

→ such that
1

( ( )) ,  for any h (0,1);
n
nL h h Lψ
+

= ∈  
(E) 2, 1, : ( ) (0,1) is the identity map, is a compact operator.nK i i D L Wψ += →o  

The existence of solution proofs of section 3 are based Proposition 2.1. 
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3. GLOBAL EXISTENCE OF SOLUTIONS 
 
In this section we consider the global solvability of the boundary value problem 
(9) (with the (PP) boundary condition) in the following two theorem.  
Theorem 3.1 
Under the assumptions H (1)-H (3), the boundary value problem (9) (with the 
(PP) boundary condition) has at least one solution for each 0 and each 0.k λ≥ ≥  
PROOF 
The boundary value problem (9) (with the (PP) boundary condition)  can be 
written in the form of an operator equation as: 

[ ( , , , ) ( )],                                                         (15)v Tv K v kv G x v v v f xλ ′ ′′= = − + + −
where K is the operator defined in Proposition 2.1.  
We will prove the existence of a solution of (15) by verifying the conditions of 
Lemma 2.1. 

1

2, 1

2

Assume that the solutions of 0 are not uniformely bounded with respect 
to t [0,1]. Then there are sequences {t } (0,1) and {v } (0,1) such that:

v t ,  1,2,.....,  and || ||  as n

n
m m

m m m m L

v tKv
W

Kv m v +

+

− =

∈ ⊂ ⊂

= = →∞ .m →∞
It follows that:

1(| | ) [ ( ) ( , , , )] ( ),
which in turn implies (upon multiplying by v ,integrating and using the 
boundary conditions):

n n n
m m m m m m m m m

m

v v t v g v h x v v v t f xλ−′′ ′′ ′′ ′′′′ ′ ′′+ + + =

 

1 1

1 1 1
2 2

0 0 0

|| || || || ( , , , ) .         (16)n nm m m m m m m m m m m m mL L
v t v v dx t k v t G x v v v v dx t fv dxλ+ +′′ ′ ′′+ + + =∫ ∫ ∫

1

2, 1

2, 1

Set w , then the sequence {w } (0,1) is bounded, and hence weakly 
|| ||

relatively compact. Hence {w } has a weakly convergent subsequence in (0,1), 

which we will still call {w }. Si

n

nm
m m

m L
n

m

m

v W
v

W

+

+

+

= ⊂

2, 1 1

1
0

nce the embedding :  (0,1) (0,1) 
is compact, the sequence {w } has a subsequence , which we will still call {w },  

which converges in (0,1),  say to w .

n

m m

i W C

C

+ →

From (16), and using assumption H (2) we get: 
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1 1

1 1

1

1 1 1 1
2 2

0 0 0 0
1

0
3

( ) = || || || || ( , , , )

                       || || || ||

                        || ||

n n

n n

n

m m m m m m m m m m m m m m m mL L

m m m m mL L

n

m m L

t g v v dx v t v v dx t k v t h x v v v v dx t fv dx

t v v t fv dx

t C v

λ

λ

λ

+ +

+ +

+

+

′′ ′′ ′ ′′− − − − +

′′≤ +

′′≤

∫ ∫ ∫ ∫

∫

1 1
2

2

|| || || || ,                                           (17)

1where: .
2

n nm mL L

n

t f y

nC
nπ

+ ++

+
=

 Using (17) and assumption H(2) we get: 

1 12

1 1

3
21

1 1
0

      0 ( ) 0 as m                         (18)
n n

n n

n

mLL L
m m p p

m mL L

f vv
g w w dx

C v v

λ + +

+ +

+

+ +

′′
≤ ≤ + → →∞∫

Since g is continuous and p>1, it follows from (18) that  

1 1

1

0 0
0

1
0

22 1 1

2 2 2
0 02 2 2

( ) 0,

which, in view of assumption H (2) (b) implies that w 0,  and w 0 in C (0,1).
On the other havd, from  (16), we have:

( , , , )n n

m

mm m mL L
m m m m m m

m m m

g w w dx

vv v vt dx t k t G x v v v
v v v

λ+ +

=

= →

′′ ′
′ ′′= − − −

∫

∫

1
1

1

1

22
02 2

1
2

2
0

2
1

2

2

2

[ (1) (1) (0) (0)] ( ) ,

which implies (by the fact that w 0 in C (0,1)) that:

0.                                        

n
n

n

m m
m

m m

m L L
m m m m m m m m

m

m

m L

m

v tdx fv dx
v v

v f
t w w w w t w dx t

v

v

v

λ λ
+

+

+

+
′′

′ ′ ′≤ − − + +

→

′′
→

∫ ∫

∫

1 1

                                                              (19)

However, (from Lemma (2.3) part (B) and the fact that  for 

v ( )) we have:
n nm mL L

v v

D L
+ +

′ ′′≤

∈

1 1
1

2 22 2 2

2
(2 ) ,

n nm m n
m mL LL

v v v C v
+ +

+

′ ′′= + ≤ +
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which contradicts (19). This completes the proof for the theorem.  
 
 

1
2, 1

0

4. 
Assuming that ( , , , )satisfies the condition

(3) [ ( , , , ) ( , , , )]( ) 0,  for all v,  u (0,1),

we obtain the following result on the uniquesness of t

m m m

n
m m m m m m

G x v v v

H G x v v v G x u u u v u dx W +

′ ′′

′ ′′ ′ ′′− − > ∈∫

UNIQUENESS

2
21

he solution.
THEOREM 4.1. Assume that H (3) holds, then the solution of the boundary 
value problem (9) with the (PP) boundary condition is unique, provided that 

                       
( 2) nn

n kλ απ
π−

< +

2

1
1 2

0

                                                          

where  is determined by representes the minimum of the functional:

( )= | |  , over ( ) { (0,1) :  || || 1}.     n
L

f v v dx D f v L v

α

+ = ∈ =∫
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Proof. 
Let v,  u be two solutions of the boundary value problem and set - . 
Then we have:
[ ( ) ( )] [ ( , , , ) ( , , , ] 0.                     (20)                      m m m m m

w v u

v u w kw G x v v v G x u u uφ φ λ

=

′′ ′′ ′′ ′′ ′ ′′ ′ ′′− + + + − =                 
Multiplying both sides of (20 ) by - , intetgrating the first two terms 
twice by parts using the boundary conditions and H (3) we get: 
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We will prove that if  satisfies (20), then  (21) can hold if and only if 0.
This will the
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n complete the proof of Theorem 4.1.
Using Holder's inequality three times, we can write (21) as:
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Using the notations: A= , , ,  we have: 
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0 holds if and only if   satisfies:
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5. 
The results of this paper generalize the previous results of the papers [1] and [2]
for elastic materials for the elasto-plastic materials based on the Hollomon s 
power-l

′

CONCLUSIONS

aw. Similar results for material following other power laws, for instant 
Ludwick and Ramberg and Osgood laws, as well as for other elasto-plastic basic 
structures such as rings, plates and arches are under preparation.
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